
Imperial College London

Department of Physics

Random Scattering of Surface Plasmons for
Sensing and Tracking

Joel Andrew Berk

Submitted in part fulfilment of the requirements

for the degree of Doctor of Philosophy at

Imperial College London



I declare that this thesis and the work reported within it was entirely produced by me.
Information derived from the work of others has been referenced in the text and references are

given in the bibliography.

Joel Berk (2021)

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents
are licensed under a Creative Commons Attribution-Non Commercial 4.0 International Licence
(CC BY-NC). Under this licence, you may copy and redistribute the material in any medium
or format. You may also create and distribute modified versions of the work. This is on the
condition that: you credit the author and do not use it, or any derivative works, for a commercial
purpose. When reusing or sharing this work, ensure you make the licence terms clear to others by
naming the licence and linking to the licence text. Where a work has been adapted, you should
indicate that the work has been changed and describe those changes. Please seek permission
from the copyright holder for uses of this work that are not included in this licence or permitted
under UK Copyright Law.

2



Abstract

In this thesis, a single particle biosensing setup, capable of sensing and tracking single nanoscale

biological particles, is proposed and investigated theoretically. The setup is based on monitoring

the speckle pattern intensity distribution arising due to random scattering of surface plasmon

polaritons (SPPs) from a metal surface. An analyte particle close to the surface will additionally

scatter light, perturbing the speckle pattern. From this speckle pattern perturbation, the analyte

particle can be detected and tracked. Theoretical sensitivity analysis predicts a biological

particle on the order of 10nm in radius gives a fractional intensity perturbation to the speckle

intensity of 10−4, comparable to intensity contrasts used in existing interferometric scattering

sensing techniques. A formula for the minimum detectable particle size is derived. In addition,

an algorithm is derived capable of extracting the particle trajectory in the single scattering

regime from the change to the speckle intensity perturbation over time and shown to be capable

of errors ∼ 1nm on simulated data under optimal noise conditions. The effect of multiple

scattering on the speckle pattern perturbation is studied, and it is shown that, by tuning the

scattering mean free path and individual scatterer properties of a random nanostructure of

scatterers on the metal surface, one can increase the magnitude of the speckle field perturbation

by up to ∼ 102. A neural network based localisation algorithm is developed to calculate the

analyte particle position based on the speckle intensity perturbation and its performance on

simulated data is studied. Mean errors on the order of ∼ 20nm were found, depending on the

size of the region over which the particle must be tracked. Unlike the single scattering tracking

algorithm, the neural network algorithm continues to function in the multiple scattering regime.
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on Ia/Ib. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Diagrammatic representation of the Dyson equation. Dotted lines represent
unperturbed Green’s tensors G0 while solid lines represent total Green’s tensors
G including the effect of scatterers. Nodes (•) represent scattering events, in-
troducing a factor of the scattering potential V (r). Intermediate positions are
integrated over. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 Examples of reciprocal scattering paths contributing to coherent backscattering.
In the backscattering direction θ = θ′, the scattering paths have identical phase
and amplitude and add up in phase. . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3 Example multiple scattering paths for each enhancement factor: (γ1, left) rescat-
tering of light after scattering from the additional particle en route to the
observation point, (γ2, center) loop trajectories starting and ending on the addi-
tional scatterer and (γ3, right) multiple scattering of the illumination field onto
the analyte particle. Figure reprinted with permission from Ref. [287] © 2021
American Chemical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Diagrammatic representations of some examples of the interference of scattering
paths LiL∗j contributing to σ2

1. Dotted lines with a forward arrow represent a
factor of G (freely) propagating the field between two scatterers, while those with
a backward arrow represent G∗ in the conjugated path. Intermediate scatterer
positions are integrated over upon averaging. Dashed lines show shared scatterers
between the two paths In the left example, the paths share no scatterers and are
therefore statistically independent. For these paths 〈LiLj〉 = 〈Li〉〈Lj〉 and there
contribution is included in |〈Gsc〉|2. The other two paths share scatterers and
therefore are not accounted for in the Drude-Boltzmann approximation. . . . . . 153

5.5 Diagrammatic representation of how the use of Gsc, represented by a solid line
with a forward arrow (backward arrow denotes Gsc∗) to propagate between
scatterers accounts for averaging over all scatterer positions not appearing in both
Li and Lj. Intermediate scatterer positions are not labelled, but are integrated
over. Replacing a dotted unperturbed Green’s function line that connects one
part of a diagram (represented by X in the figure) with the rest of the diagram
(represented by Y) with a solid line representing Gsc in a diagram accounts for the
whole set of diagrams visiting intermediate scatterers between X and Y, provided
those intermediate scatterers do not appear in the rest of the diagram (i.e. in X
and Y). As such, connecting scattering events with solid lines and using Gsc, one
only needs to consider shared scatterers between two paths. . . . . . . . . . . . . 154

5.6 Examples of different kinds of path interferences contributing to σ2
1, where every

scatterer appears in the both paths. . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.7 The first four ladder diagrams which give rise to Eq. (5.71). Solid lines with a

forward arrow represent Gsc while backwards arrows denote Gsc∗, intermediate
scatterer positions are integrated over. Dashed lines connect shared scatterers. . 155

5.8 The three lowest order examples of maximally crossed diagrams, which are
responsible for coherent back scattering and weak localisation effects. . . . . . . 156

11



5.9 Complex means (a) 〈γ1〉, (b) 〈γ2〉, (c) 〈γ3〉 and (d) the mean amplitudes of the
individual enhancement factor 〈|γi|〉 and the total enhancement factor 〈|γ1γ2γ3|〉
for a gold-water interface at λ0 = 650nm with 40nm gold sphere scatterers.
Vertical dashed lines indicate densities used in Fig. 5.10. Figure reprinted (with
alteration) with permission from Ref.[288] © 2021 American Physical Society. . 162

5.10 The relative frequency of γ1 (top row), γ2 (middle row) and γ3 (bottom row) over
the complex plane for scatterer densities nλ2

0 = 0.05 (left column), 0.67 (middle
column) and 8.0 (right column). Figure reprinted with permission from Ref. [288]
© 2021 American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.11 Plots showing, as a function of n, (a) the standard deviations σRe and σIm of
the real and imaginary parts of γ1,2,3, (b) the ratio σRe/σIm and (c) the Pearson
correlation coefficient of |γ1,2,3 − 〈γ1,2,3〉| and arg(γ1,2,3 − 〈γ1,2,3〉). . . . . . . . . . 164

5.12 Enhancement factor amplitude statistics for an incident fieldE0,z = exp(ikSPPx− κdz),
(a) the density dependence of 〈|γi|〉 and 〈|γ1γ2γ3|〉. The black line indicates the an-
alytic ladder approximation result for 〈|γ1|〉 from Eqs. (5.61) and (5.86), plotted
up to the point it diverges. (b) The relative frequency of a given total amplitude
enhancement for a different scatterer densities. The vertical dashed coloured lines
in (a) indicate the densities plotted in (b). Figure reprinted (with alteration) with
permission from Ref. [287] © 2021 American Chemical Society. . . . . . . . . . 165

5.13 The mean amplitudes (a) 〈|γ1|〉 and (b) 〈|γ1γ2γ3|〉 for various different observation
wavevectors k‖ = kd(sin θ cosφ, sin θ sinφ). Note that γ2,3 do not depend on
observation position since they only deal with scattering onto the analyte particle.167

5.14 The complex mean 〈γ1〉 as a function of n for different observation positions (a)
Re〈γ1〉 and (b) Im〈γ1〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.15 Equivalent of Fig. 5.9 but with α = iαg1. . . . . . . . . . . . . . . . . . . . . . . 169
5.16 Equivalent of Fig. 5.12 showing but with α = iαg1. Histograms are plotted

at different densities to Fig. 5.12 since the transitions in distribution occur at
different points. Figure reprinted (with alteration) with permission from Ref.
[287] © 2021 American Chemical Society. . . . . . . . . . . . . . . . . . . . . . 170

5.17 Equivalent of Fig. 5.10 showing the histograms of the individual enhancement
factors on the complex plane but with α = iαg1. Densities plotted are (left)
nλ2

0 = 0.05, (centre left) nλ2
0 = 0.67, (centre right) nλ2

0 = 2.31 and (right)
nλ2

0 = 8 which correspond to the same ones as in Fig. 5.10, with the addition of
n = nopt,tot = 2.31λ−2

0 to show the optimum density distribution is analogous to
that of Fig. 5.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.18 Equivalent of Fig. 5.9 for the ‘high loss’ case of λ0 = 600nm and α = αg2. Figure
reprinted with permission from Ref. [288] © 2021 American Physical Society. . 172

5.19 Equivalent of Fig. 5.10 for the ‘high loss’ λ0 = 600nm case, with α = αg2, showing
the probability distribution of the enhancement factors over the complex plane. . 173

5.20 Equivalent to Fig. 5.9 for λ0 = 600nm, α = −αg2 and k‖ = −k′SPPx̂. Figure
reprinted with permission from Ref. [288] © 2021 American Physical Society. . 175

12



5.21 The dependence of 〈|γ1γ2γ3|〉max and lopt,tot on the phase of α (or equivalently µ)
for (a) the high loss λ0 = 600nm case and (b) the low loss λ0 = 650nm case. The
median value of |γ1γ2γ3| at lopt,tot is also shown. The vertical dashed line indicates

the phase of α at which the divergence condition Im[αG̃(k‖)] = 0 from Eq. (5.60)
is satisfied. Points for which 〈|γ1γ2γ3|〉max ≤ 1 are not plotted but denoted by
the shaded blue region, since this indicates no amount of multiple scattering
improves sensitivity on average and single scattering (i.e. n = 0) provides the
best mean sensitivity. Figure reprinted with permission from Ref. [288] © 2021
American Physical Society. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.22 The Pearson correlation coefficients Pij of the enhancement factor amplitudes in
the low loss case for (a) α = αg1 and (b) α = iαg1. . . . . . . . . . . . . . . . . . 178

6.1 A simple example of a fully connected feed forward neural network, with each
node in a layer connected to every node in the subsequent layer. The neural
network shown consists of a single element input, a hidden layer of 4 nodes, a
second hidden layer of 2 nodes and a single element output. Lines indicate the
left node ouput is fed as input to the right node. . . . . . . . . . . . . . . . . . . 181

6.2 Schematic of the structure of the dense neural network used to localise the particle
position from the leakage ring speckle pattern intensity profile. The number of
nodes shown does not represent the true size of each layer (except for the final
output layer). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.3 Mean error as a function of training set size for (left) Gaussian random vector
simulated speckle at different ratios of particle scattered intensity to background
speckle intensity Ia/Ib and (right) coupled dipole simulated speckle at different
scattering mean free paths ls (or equivalently scatterer densities). . . . . . . . . 194

6.4 Mean error as a function of training region size Lx for (left) Gaussian random
vector simulated speckle and (right) coupled dipole simulated speckle. . . . . . . 195

6.5 Mean error as a function of SNRtot for (left) Gaussian random vector simulated
speckle and (right) coupled dipole simulated speckle. . . . . . . . . . . . . . . . 196

6.6 Mean error as a function of SNR for coupled dipole simulated speckle for different
ls and Ntrain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.7 Mean error as a function of scattering mean free path for coupled dipole simulated
speckle. The plots shown are for Ntrain = 50, 000 (blue and green lines) and
Ntrain = 100, 000 (yellow and red lines), with corresponding mean separation of
training points 〈∆x〉 shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.8 Mean error as a function of analyte particle radius, for different training radii rtr
and mean free path ls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.1 Diagram showing the contour used to evaluate the integral in Eq. (A.1) in the
limit R→∞ and the location of the poles of the integrand. . . . . . . . . . . . 252

13



Abbreviations and Acronyms

CCD Charge coupled device

CNN Convolutional neural network

DLS Dynamic light scattering

DWS Diffusing wave spectroscopy

FET Field effect transducer

FWHM Full width at half maximum

iSCAT Interferometric scattering microscopy

LDOS Local density of states

LOD Limit of detection

LSPR Localised surface plasmon resonance

MINFLUX Minimal photon fluxes

MLE Maximum likelihood estimation

NA Numerical Aperture

PALM Photoactivated localisation microscopy

PC Photonic crystal

PDF Probability density function

PRAM Photonic resonance absorbance microscopy

PSF Point spread function

RIU Refractive index units

RMS Root mean square

RTE Radiative transfer equation

SBR Signal to background ratio

SGD Stochastic gradient descent

14



SLM Spatial light modulator

SNR Signal to noise ratio

SPP Surface plasmon polariton

SPR Surface plasmon resonance

SPT Single particle tracking

STED Stimulated emission depletion

STORM Stochastic optical reconstruction microscopy

TIR Total internal reflection

WGM Whispering gallery mode



Chapter 1

Introduction

1.1 Motivation

The ability to detect and track single nanoscale particles is an important tool within science, and

in particular biological and medical sciences, allowing the investigation of processes at a single

molecule scale. Live study of biological transport processes, such as the passage of proteins

through pores or the motion of biological molecular motors such as myosin, elucidates greater

understanding of the mechanisms, informing development of therapeutic responses to disease

and diagnostic techniques. Detection of target analyte molecules can be used for diagnosis,

while structural information about biological objects at ever smaller scales is similarly valuable.

Ever since early microscopes allowed visualisation of single cells, the use of light has been

one of the primary methods to probe biological systems at the smallest scales. A range of

microscopy techniques, such as bright field, dark field and phase contrast microscopy, enable

images to be formed with a spatial resolution limited to the order of hundreds of nanometres

owing to the diffraction limit. The rapidly developing fields of localisation microscopy and super-

resolution microscopy extend optical microscopes beyond the diffraction limit, with localisation

microscopy capable of extracting an object’s position with precision on the order of ∼ 1nm [1]

and super-resolution microscopy able to produce images with spatial resolution as low as 5nm

[2]. Several factors have driven the advances in localisation microscopy, notably including the

increasing availability of computing power enabling the rapid execution of image processing
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localisation algorithms, including machine learning based algorithms [3, 4]. Similarly, improved

tools to control and shape light such as spatial light modulators (SLMs) have allowed structured

light to be used in localisation microscopy [5, 6]. Fluorescent microscopy is a prominent tool

in enabling localisation and super-resolution microscopy [7]. The reason for this is that the

weak interaction of small biological particles, such as single proteins or viruses, with light means

the signal transduced in a microscope by a single particles is small and difficult to detect in

the presence of noise. By attaching a fluorophore, which does interact strongly with the light,

the signal is enhanced. The problem with this approach (and other labelling methods such as

attaching metallic nanoparticles which interact strongly with light) is that the labelling of the

analyte particle can affect its function and behaviour, posing a problem for studying the native

biological function of the analyte particle [8, 9]. As such, label free approaches are desirable, and

use alternative approaches such as interference of scattered light with a strong reference field to

enhance the signal from nanoscale biological particles as is done in interferometric scattering

microscopy (iSCAT) [10].

In addition to microscopy, light, in particular resonant optical modes, have found application

in biosensing [11]. In this sensing modality, the binding of biological particles to receptors on

the surface of optical cavities alters the parameters of the resonance, and from measuring this

change, binding events can be deduced. Photonic resonance sensing techniques suffers from the

same weak interaction with nanoscale biological particles as microscopy, with this limitation

overcome by a combination of the confinement of the light mode and the long lifetime of a

photon in the mode, both of which increase the sensitivity of the resonance to the presence of

the biological particle.

An important class of electromagnetic modes in the context of biosensing are plasmonic

modes, which arise when light interacts with metallic structures. Since they were first proposed

in 1952 [12], these plasmonic modes, in which light couples to free electrons in the metal, have

received much research interest [13, 14]. An important property of such modes is that they are

strongly confined to metallic surfaces, whether this be a surface plasmon resonance (SPR) on a

planar metal surface or a localised surface plasmon resonance (LSPR) on the surface of metallic

nanoparticles. The strong confinement leads to extremely strong electric fields near the metallic
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surface and thus strongly enhanced light matter interactions at the surface [15]. As a result,

plasmonic modes have seen much use in biosensing [16, 17, 18], with the enhanced interaction

overcoming the weak signal limitation mentioned previously. Indeed, SPR sensors have a long

established, successful history and are widely commercially available [19]. The enhanced light

matter interaction is not without a cost, as the high ohmic losses in metal broaden the resonance,

reducing the sensitivity. As such, while LSPR sensors have achieved single particle sensitivity

[20], the easily fabricated, commercially available SPR setup has not yet achieved this.

The motivation of this thesis is to theoretically develop and investigate a platform for label

free single nanoscale particle sensing and tracking based on a simple experimental setup similar

to SPR, to allow for low cost commercial availability. In general, matter can interact with light

through two mechanisms: scattering and absorption. In this thesis, scattering is the interaction

mechanism used to perform sensing, since the distribution of scattered light contains more

information than simply an absorption event. Furthermore, the interference of the scattered

light with a larger field can enhance the signal in the manner of iSCAT. Within a coherent

detection scheme such as iSCAT, scattering from random disorder can have a significant effect,

with disorder arising due to the complex biological media being used, fabrication imperfections

in the optical elements or by deliberate design. The random scattering of light is an area of

optical physics widely studied, in particular for biological applications. The interference of

many randomly scattered light waves gives rise to a distinctive granular pattern of bright and

dark spots depending on whether the scattered waves add up constructively or destructively.

Statistical properties of speckle patterns and randomly scattered light have been studied and

modelled with great success [21]. While appearing random, speckle patterns depend on the

properties of the scattering medium and as such, techniques such as dynamic light scattering

(DLS) and diffusing wave spectroscopy (DWS) are able to extract information about a sample

based on properties of these speckles [22, 23]. The properties of randomly scattered light depend

on which scattering processes are dominant, and in particular the degree of multiple scattering,

in which light is scattered many times before propagating to a detector. In the single scattering

regime, multiple scattering is by definition negligible and light is scattered independently by

individual scattering centres. Conversely, multiply scattered light visits many different scatterers
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and thus is not simply a coherent sum of the light scattered from each individual scatterer. As

a result, multiple scattering gives rise to a rich range of physical phenomena such as localisation

and long range correlations that have been studied in depth [24, 25, 26, 27, 28]. The presence

of multiple scattering is often seen as a drawback owing to the fact that in the single scattering

regime there exists a linear relationship between scattered field and object permittivity that

is no longer present when multiple scattering is significant [29]. In certain contexts, however,

multiple scattering can in fact provide beneficial features, for example it has been leveraged to

overcome the diffraction limit [30] or to give rise to areas of high light intensity for increased

interaction with matter [31]. Due to the significantly different properties of scattered light

in the single scattering and multiple scattering regimes (and even within multiple scattering,

the properties can vary with the degree of multiple scattering, such as between the diffusive

and Anderson localised regime), it is important in any scattering system to understand the

significance of multiple scattering and to find the optimal working regime for the particular

application.

1.2 Thesis Structure

The approach investigated in this thesis, using random scattering of propagating surface plasmon

modes, allows for the possibility of plasmonic light matter interaction enhancement, interference

effects and multiple scattering, all of which may help to overcome the weak interaction of light

with nanoscale biological analyte particles and achieve sensing and tracking, while maintaining

an experimental setup similar to the easily fabricated SPR sensor. To provide context and

motivation for the work, Chapter 2 reviews previous literature on biosensing, with particular

focus on single particle sensitivity, and tracking or localisation of single biological molecules.

Common metrics assessing the performance of these methods will be introduced and the relative

merits and drawbacks of current techniques discussed. Chapter 3 introduces the proposed

sensing setup, motivated by the context provided in Chapter 2, and analyses the sensitivity and

detection limits of such a sensor within the single scattering regime. Following this study into

the sensing capabilities of the proposed system, Chapter 4 describes how the setup can also
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allow for tracking, derives an algorithm, valid in the single scattering regime, to track a single

biological molecule based only on light intensity measurements and assesses the algorithm’s

performance on simulated data. With both the potential sensing and tracking capabilities of

the proposed setup investigated in the single scattering regimes, Chapter 5 explores the role of

multiple scattering in the setup, and in particular its effect on the sensitivity. Once the effects

of multiple scattering on the proposed setup are understood, Chapter 6 extends the tracking

capability into the multiple scattering regime via the use of a neural network based localisation

algorithm and investigates its performance on simulated data. Finally, Chapter 7 summarises

the key findings of this thesis, and briefly discusses possible future work.
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Chapter 2

Biosensing and Tracking

The use of physical devices to extract information from biological systems has been ubiquitous

in the biological sciences since their inception. Optical microscopy, for example, has played a

fundamental role in many biological discoveries from the discovery of the cell to the modern

day nanometre scale studies enabled by super resolution microscopy and fluorescent microscopy

methods. Developments in photonics and plasmonics have provided a wide range of biosensing

technology that utilises light, including systems such as SPR and optical microcavity sensors.

Optical technology, both in the form of microscopy and biosensing, has enabled great advances

in fundamental biological studies such as improved understanding the movement of proteins

on or through membranes, and also in the development of medical technology and techniques.

The aim of this chapter is to review the range of methods used in modern biology to sense

and track biological objects such as proteins or viruses which have a length scale in the tens of

nanometres or smaller and to quantify the sensitivity of these methods. Primarily, the focus will

be on methods capable of detecting single nanometre scale biological objects, and also single

particle tracking (SPT) or localisation. From this review, the limitations of current methods

will become clear, motivating the introduction of new approaches to biosensing and tracking to

overcome the limitations, such as the one that will be studied in this thesis. Furthermore, the

review of the performance of current methods will provide a context for assessing the proposed

biosensing setup to be introduced in Chapter 3.
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2.1 Evaluating Biosensor Performance

A biosensor is a device in which biological activity transduces a measurable physical signal

[32, 33], for example a change in intensity of light on a camera or electrical current. One must

consider several features of any biosensor in quantifying its performance, and it is useful to

define some performance metrics to allow comparison of different biosensors. The performance

metrics will be defined in a general biosensing context, but also discussed more specifically with

regards to how they apply to sensing analyte particles. Firstly, the sensitivity S quantifies the

size of the change in the measured quantity induced by the biological activity one is trying to

measure [33]. The sensitivity is defined as

S =

∣∣∣∣∂M∂X
∣∣∣∣, (2.1)

whereM is the measured quantity (e.g. intensity of light) and X is the quantity one is interested

in detecting. For example, in particle sensing, X could be the concentration of analyte particles,

or for a refractometer, X would be a refractive index. Another important quantity is the limit of

detection (LOD), which is the minimum change to M detectable above the noise in the system,

given by [34, 35]

LOD = mσM, (2.2)

where σM is the standard deviation of the (zero-mean) noise in M, while m is a constant of

order unity that depends on the confidence with which one wants to assign a measurement to a

change in X as opposed to noise, and also the probability distribution of the noise. For example,

for Gaussian distributed noise at 95% confidence, m ≈ 1.645 [34], while m = 3 is also a common

choice [35]. Often, limit of detection is used to refer to the value of X which perturbs M by an

amount equal to the limit of detection. This quantity XLOD is defined by

|M|X=XLOD
−B| = LOD, (2.3)
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where B =M|X=X0 is the background measurement when X = X0, an initial reference value.

For example, if X is the concentration of a particular analyte particle, X0 is the concentration in

a blank measurement, often X0 = 0, i.e. in the absence of any analyte particles. It is important

to distinguish between the two quantities, as LOD describes a property of the measurement

process only, while XLOD additionally depends on the properties of X. The time resolution

τres of a sensor is also an important factor to consider, defined as the time taken to make a

measurement of M. In general, a smaller τres is better, but often reducing τres comes at a cost,

such as increasing noise σM due to reduced integration time, while technological constraints

also limit the time resolution. It is sufficient, however, to achieve τres < τX , where τX is the

timescale over which X varies. Time resolution beyond this does not provide any additional

benefits since the consecutive measurements will be the approximately the same until a time

∼ τX has passed. The sensing volume Vsens is the volume within which changes to X contribute

to perturbing M. For particle sensing, larger sensing volumes will allow a greater number of

particles to affect M for a given concentration of analyte particles, but additionally there will

be more non-specific sensing events, i.e. particles different to the analyte particle which can

also change the value of M. Conversely, a small sensing volume, while reducing the frequency

of analyte particles coming into Vsens to transduce a change in M (which can be especially

problematic at low concentrations), can more tightly localise the sensing events and allow for

compact multiplexed arrays of sensors.

So far, the biosensor performance metrics defined above have been defined in terms of the

measured quantity M. As seen in the definition of XLOD, this measured quantity can contain

contributions arising from the background, which contains no information about the quantity of

interest X. The information carrying part of the measured quantity can be defined as the signal

S, which for small changes in X is given by S = |(∂M/∂X)X|. Signal is often used colloquially

to refer to the measured quantity M, however it is important to distinguish S and M here, in

order to fairly compare sensing (or tracking/localisation) methods with differing background

levels. When M is linear in X, the signal is just the background subtracted measurement

S = M− B. Two commonly used metrics of the signal, relevant to biosensing, but also to

signals measured in SPT/localisation, which should be introduced are the signal to noise ratio
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(SNR), SNR = S/σM, and the signal to background ratio (SBR), defined as SBR = S/B. The

SNR is closely related to the LOD, which corresponds to the case when SNR = m if M is

linear in X, quantifying how easily the signal arising due to X can be distinguished from the

system noise. Whereas the LOD is relevant in evaluating the ability to make a binary choice

of whether the change in S arises from an actual sensing event or noise, in cases where the

measured signal is processed in order to extract further information (e.g. SPT), the SNR is more

relevant in quantifying the extent to which noise will degrade the information extracted from

the signal. The SBR similarly quantifies the ability to distinguish the perturbation to S from

the background, which is valuable in assessing the required dynamic range of any measurement

device involved.

The metrics introduced allow for quantitative comparison of the signals transduced within

different biosensors. Another important feature to consider in any biosensor is the specificity,

meaning the extent to which the signal is transduced solely by the analyte particle of interest, as

opposed to other objects present in the sample. A real biological sample will typically contain

many different chemical species and molecules, so it is therefore important for a biosensor to

have high specificity for the exact analyte species one is aiming to study. Many biosensors

achieve both specificity and sufficient signal level through labelling, in which a label particle,

for example a fluorophore, quantum dot or metallic nanoparticle, is attached to the analyte

particle [36, 37, 38]. The labelled particle transduces the signal, and thus by choice of label, it

can be ensured that the SNR and SBR are sufficiently large to avoid signal corruption and give

a lower XLOD, regardless of the nature of the native analyte particle. Furthermore, the label

provides specificity, since one only labels the analyte species, which can be achieved through

using specific chemical properties of the analyte or genetically encoding label particles [8, 39, 40].

Labelling does have significant downsides, in that the label can modify the nature of the analyte

particle, possibly altering its biological behaviour [8, 9, 41]. In addition, it may not always be

possible or practical to label the analyte particle, for example if the analyte particle cannot be

treated before sensing.

The performance and limitations of current biosensing technology will now be considered,

with particular attention to the metrics introduced, along with specificity and labelling.
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2.1.1 Nanopore and Nanowire Sensors

Nanopore sensors consist of a small (nanometre scale diameter) pore embedded in a surface,

either as a protein pore in a membrane [42], or an artificial pore in an insulating surface [43].

A voltage across the membrane drives a current through the pore, which can be measured.

The presence of an analyte particle within the pore increases the electrical resistance in the

pore, reducing the current through the pore. This current drop is the signal transduced by the

analyte. Specificity is provided by the pore design, with engineering of the pore structure (in

both the chemical components and physical shape) encouraging the transit of the particular

analyte particle through the pore [44]. As the pore design is optimised, both geometrically and

chemically, for the native analyte particle, there is no need for labelling. Nanopore technology

has found widespread use in DNA sequencing [45, 46]. Different DNA bases have different

amplitude current dips and dwell times in the pore (corresponding to the duration of the

measured current dip), meaning that as a DNA strand passes through the pore, the pattern of

current decreases and dwell times can be converted into a base sequence [47]. In addition, it

has found use in detecting the presence of a wide range of biomolecules and toxins [48, 49].

Nanopore sensing provides a label-free, highly specific biosensing technique capable of detect-

ing single nanometre scale particles, but the measured current signal does provide limitations.

Specifically, noise in the current arising from nanobubbles in the pore and Johnson noise [50, 51]

can reduce the ability to resolve the current dip associated with a translocation of the analyte

through the pore. The SNR improves with decreasing pore diameter, with a 3nm diameter pore

giving SNR ∼ 50 for translocation of a 16.5µm long DNA strand, whereas a 50nm pore has an

SNR below 20, with the exact value dependent on the salt concentration [51]. Furthermore, for

DNA bases, the rapid translocation means events can be missed altogether owing to insufficient

temporal resolution [52].

Another type of biosensor that follows a similar physical principle to nanopore sensors is

the nanowire field effect transducer (FET) sensor [53, 54]. This consists of a wire of nanometre

scale diameter, with biological receptors on the surface. The binding of the analyte particle to

the receptor changes the conductance of the wire. Measuring the conductance as a function

of time, one can deduce binding events from step changes (either increases or decreases) in

25



CHAPTER 2. BIOSENSING AND TRACKING

the conductance [55]. The receptors bound to the nanowire provide the specificity as they are

chosen to have a high affinity for the analyte particle. This also precludes the need for labelling.

For DNA strand detection, SNR & 20 is typical, comparable to nanopore sensors [56].

A single nanowire or nanopore provides only a very small sensing volume (only detecting

analytes on the surface of the nanowire or area of the nanopore, a nanometre scale region). As

such, they are unable to provide spatial information, while at low analyte concentrations there

is a low frequency of binding/membrane translocation events, increasing the time required to

get an event and the probability of missing the presence of the analyte particle altogether. This

problem is overcome by using arrays of nanopores/wires [57, 58]. The spatial resolution of a

multiplexed array is limited to the size of a single nanopore/wire and the density at which they

can be packed.

2.1.2 Resonance Sensors

A wide range of biosensors can be classified as resonance sensors. These share the same

underlying physical principle in their operation. The sensor exhibits a resonant response at a

particular input parameter (such as frequency of an external driving force) which is sensitive to

the presence of the analyte particle. The perturbation caused by the analyte particle changes

the physical parameters of the resonance. From measuring the response of the oscillator over

time, one can infer the presence of the analyte particle when this response changes.

In general, an oscillator with natural frequency ω0 loses energy due to damping, so that

the energy of the oscillator at time t, assuming no energy is put in, is U(t) = U0 exp(−ω0t/Q),

where Q is the quality factor (Q-factor), defined as the number of complete oscillations for

the energy in the oscillator to decay to 1/e of its initial value, U0 [11]. The energy of the

oscillator contained at a frequency ω is Ũ(ω), the Fourier transform of this exponential decay.

The frequency response of an oscillator is therefore Lorentzian, centred on the natural frequency

ω0, which is expressed

Ũ(ω) =
U0

(ω − ω0)2 + (ω0/2Q)2
. (2.4)

As a result, when measuring the frequency response of a resonator, one sees a peak centred on ω0,
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but with a finite width, specifically a full width at half maximum (FWHM) of ∆ω = ω0/Q. Note

that Ũ(ω) represents the energy in the resonator at frequency ω, while an actual experiment

will often measure energy (or some related quantity) transmitted away from the resonator,

which takes the form Ubg − Ũ(ω) for some background energy Ubg that would be measured in

the absence of the resonator, but is absorbed into the resonator in its presence. The measured

quantity would then take th gives an inverted Lorentzian. In order to detect a change in ω0,

the change must be large enough that it can be resolved from the finite linewidth. Shifts much

smaller than ∆ω cannot be resolved, with noise levels determining how much smaller than ∆ω

one can detect [11]. For example, in optical systems, measurements of power are shot noise

limited (arising due to the arrival statistics of quantised photons) at best, in which case the

minimum detectable shift in resonance frequency, δωmin, is given by [59, 60]

δωmin
ω0

=
1

Q

√
~ω0

P0νβτ
(2.5)

where P0 is the power coupled into the resonator, τ is the integration time of the light detector, β

is the cavity transmission efficiency and ν is the quantum efficiency of the detector. While optical

resonances often have other limiting noise sources to shot noise such as sample temperature

variation, and non-optical resonances will have different noise sources altogether, the principle

remains the same, the minimum detectable shift is determined by Q and the properties of the

signal noise [61].

The spectral response of oscillators mean there are two approaches in choosing and optimising

the resonance used for biosensing. Firstly, one can maximise the shift caused by interaction with

the analyte particle, ensuring the large shift is resolvable. The other approach is to reduce the

width of the resonance by using high Q resonances, so that even small shifts to the resonance

frequency are detectable. In ideal circumstances, one would optimise both factors, but often

the two elements are in competition. Indeed, increasing the interaction between the analyte

particle and resonator will generally tend to increase the interaction of the oscillator with the

environment in general, leading to increased losses. Furthermore, non-specific interactions, i.e.

with particles other than the analyte, may also be increased. As such, the design of resonance
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Figure 2.1: The measured response signal M as a function of driving frequency before (blue) and
after (red) binding of the analyte particle(s). The change in resonance frequency (δω0), resonance
width (δ∆) or the change in response signal at a single frequency (δS) can all be used as a sensing
signal, or a combination of all of them. While shown as a function of frequency ω, the same principle
can be applied to M as a function of other physical parameters (such as angle in the case of SPR).

based biosensors is generally a balance between these two factors. While using the shift in ω0 is

used as an example perturbation through which biosensing can be deduced, other changes to the

resonators response, such as broadening of the linewidth, ring down time over which the energy

in the oscillator decays or mode splitting in which degenerate modes of the oscillator split into

modes at two different resonant frequencies, can also function as an indication of a binding event

[60, 62, 63, 64, 65]. Fig. 2.1 shows a schematic example of some of these changing resonance

properties, with an inverted Lorentzian lineshape. Regardless of the resonance property being

monitored, the same considerations of balancing Q factor and size of the change still apply. The

resonator response has been discussed here as a function of frequency, and thus to measure

changes in this entire response curve, one would have to measure the response of the oscillator at

a range of different frequencies. Some resonance sensors do take this approach, sweeping through

frequency of the external force on the oscillator to measure a response curve [66]. Alternatively,

the change to a measurement at a single frequency in the response curve could also serve as a

sensing signal [20, 67]. Commonly, this measurement frequency will be chosen as ω0 ±∆ω/2,

as this is where the gradient of a Lorentzian curve is steepest and therefore gives the biggest
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signal change for a given shift [68, 69]. While a single measurement is less reliable, being more

susceptible to noise, the reduction in number of measurements can provide advantages such

as improved time resolution. Finally, it should be noted that a resonant response can also be

observed as a function of a parameter other than frequency, for example the angle of incidence

of light on an optical resonator [66, 70]. The same principles discussed apply regardless of the

parameter, with substitution of the appropriate parameter for ω.

The optimal operating modality for a resonance sensor depends on the exact nature of the

resonance being used, and so a few common resonance sensing techniques will be reviewed here.

Mechanical Resonances

Mechanical oscillators have been designed for biosensing applications. In general, they are

equivalent to a ‘mass on a spring’ type system with a frequency ω0 = (k/m)1/2, with k being the

systems effective spring constant and m the mass of the oscillator. The presence of the analyte

particle changes the mass by ∆m, and thus the frequency shifts to ω′0 = (k/m+ ∆m)1/2 [71].

Carefully designed mechanical oscillators are capable of sensing extremely small mass changes,

for example the detection of mercury vapour adsorbed on an oscillator [72]. Achieving such

sensitivity in biological samples is significantly more challenging owing to the oscillator being

in a fluid with viscous losses, but such biosensing mechanical resonators have been designed

[73], capable of measuring the mass of single bacterial cells [71] or viruses [74] and micron

scale particles [75]. A major challenge with mechanical resonators is the conversion of the

oscillator motion into a physically measurable signal [73, 76]. In comparison, optical signals are

relatively simply to measure and thus optical resonances are more common within resonance

based biosensing.

Surface Plasmon Resonance

The SPR is an electromagnetic resonance exhibited by metal-dielectric interfaces. The interface

supports a propagating mode confined close to the interface called a surface plasmon polariton

(SPP) (see Chapter 3 for detailed description of the physics of SPPs). This SPP has a well

defined wavevector, kSPP, which depends on the refractive indices of the metal and dielectric
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at the interface. In order to couple light into the SPP mode, the transverse component of

the wavevector of the incident light must match kSPP, meaning that one sees a large decrease

in the reflected light intensity when light is incident at the resonant angle ΘSPP, as the light

couples into the SPP mode instead of being reflected. The confinement of the SPP leads to

high intensity electric fields near the surface, resulting in strong interaction between the SPP

mode and matter near the surface [13, 14]. As a result, kSPP is highly sensitive to the local

environment at the surface. It is this principle upon which SPR sensing is based.

The binding of analyte particles to biological receptors on the metal surface shifts kSPP due

to the changes in the local refractive index near the surface [19]. The shift in kSPP can be

deduced by a range of different measurement schemes. In angular modulation, the reflected

intensity is measured for a range of different incident angles. When plotted as a function of

angle, the intensity shows a dip at ΘSPP, as in figure 2.1, but as a function of incident angle as

opposed to ω. Binding of analyte particles shifts the angle at which the dip occurs. The size

of the shift in angle can be converted into a refractive index shift, which allows one to deduce

the amount of analyte binding. When measured over time, this information can be translated

into kinetic binding rate data [19]. Angular modulation is analogous to measuring δω0 shown

in Fig. 2.1. Intensity modulation is an alternative measurement scheme, analogous to the δS

measurement from Fig. 2.1, in which the incident angle is fixed, but the shift in kSPP means the

reflected intensity for that incident angle changes, as the resonance reflectivity dip has moved

relative to the fixed incident angle [19]. These two methods are examples of the difference

between measuring a full response curve (in this case as a function of angle) as opposed to

monitoring a single point on the response curve in the case of intensity modulation. There are

several other measurement schemes, such as wavelength modulation, polarisation modulation

and phase modulation [19, 77], but ultimately all methods monitor a signal that arises due to

the change in kSPP.

For an SPR sensor, X in Eq. (2.1) is ∆n, in refractive index at the surface caused by

binding of analyte particles [78]. The quantity corresponding to M depends on the modulation

used. For example, in angular modulation, M is ΘSPP, while, in intensity modulation, M is

the intensity of reflected light measured for the fixed incident angle. For a single SPR sensing
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channel, angular modulation offers improved LOD owing to multiple measurements being taken,

reducing the noise [16, 35], however, the intensity modulation set up allows for SPR microscopy

(also called SPR imaging) [79], which provides spatial information on the binding of the analyte

particle. By measuring the intensity from an array of many intensity modulation SPR sensors

on a surface, one can ascribe different shifts in kSPP, corresponding to different mass of the

analyte binding to the surface, to each point on the surface, giving spatial information about the

analyte particle binding [80]. The spatial resolution of such sensors is on the micrometre scale.

As SPR sensors ultimately rely on the measurement of light intensity (whether this be for

a single incident angle as in intensity modulation, or multiple intensity measurements as in

angular or wavelength modulation), there will always be shot noise due to the discrete arrival of

photons at the detector, though other noise sources such as thermal variations in refractive index

can also affect the SNR. It has been suggested that current SPR sensing technology based on

planar metal-dielectric interfaces is approaching the shot noise limit for LOD [78], corresponding

to ∼ 10−6 refractive index units (RIU).

Due to their relatively simple experimental implementation and their capability of label-free

sensing, SPR sensors are widely used in studying various biological processes including studies of

binding kinetics [81, 82, 83] and detection of toxins [84]. SPR sensors based on planar interfaces,

however, are only capable of sensing the analyte particle in bulk, i.e. they can only detect the

effect of many binding events. This is because high ohmic losses in the metal, required to form

an SPR, result in a relatively low Q factor, and therefore very small changes associated with the

binding of a single particle cannot be resolved. As such, they are not appropriate for studies

requiring single particle sensitivity, as may be required for example at low analyte concentration.

Localised Surface Plasmon Resonance

An LSPR is a resonance that is closely related to the SPR. Rather than being propagating

modes confined to a metallic interface, LSPR modes are localised on the surface of metallic

particles [13, 14]. The frequency at which such a localised mode is supported is determined

by the optical properties of the metallic particle and it’s surrounding medium and the particle

geometry [14]. For example, the classical expression for the (quasistatic) polarisability of a
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sphere of radius Ra and dielectric constant εp in a medium of dielectric constant εd is [85]

α = εdε04πR3
a

(
εp − εd
εp + 2εd

)
, (2.6)

which gives a resonance condition at a frequency where |εp + 2εd| is minimised, corresponding

to the Fröhlich condition Re(εp + 2εd) = 0 provided losses are small [86]. This condition requires

the real parts of εd and εp have opposite signs, and thus can be satisfied for metallic particles

embedded in a dielectric medium. Ellipsoidal nanoparticles give alternative resonance conditions

[87], while a more accurate resonant condition for the spherical particle can be achieved using

Mie theory [86, 88]. In a sensing context, a range of different geometries of metallic nanoparticles,

including spheres, nanorods, pyramids and cubes are used [20, 89, 90, 91, 92], but all exhibit a

resonant response, and the operating principle is the same for all geometries. Binding of analyte

particles to receptors on the surface change the local dielectric constant of the surrounding

medium, shifting the resonance frequency. Compared to SPR, the resonant mode in LSPR is

confined to a much smaller region, decaying over a length scale of the order ∼ 10nm from the

metal surface compared to ∼ 100nm for SPR sensors, with the surface of the nanoparticle also

being significantly smaller (e.g. surface of ∼ 50nm sphere) than the area of a SPR mode. As a

result, there is a stronger interaction between the analyte particle and an LSPR mode.

Sensing is achieved via modulating the frequency of light incident upon the metallic nanopar-

ticle or an ensemble of nanoparticles. One observes a dip in transmitted power at the resonance

frequency, when the incident optical power couples strongly into the localised mode and thus very

little is transmitted, with a plot of transmitted power against frequency exhibiting a resonant

lineshape. Binding of analyte particles to the receptors can then by deduced by observing

a change in the frequency of the dip, with the frequency shift related to a refractive index

change or the number of bound analyte particles either through calibration assuming a linear

relationship or more detailed electromagnetic modelling of the perturbation to the resonant

mode [17, 93]. Intensity modulation based sensors are also used, in which the incident frequency

is fixed and changes in intensity are used as a signal [20, 94]. Unlike SPR, LSPR sensors are

capable of single particle sensitivity, detecting single proteins [20]. Furthermore, the small size
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of a single LSPR nanoparticle sensor allows multiplexing of many sensors in a small region

[18]. Metallic nanoparticles can themselves be used as label via attaching them to analyte

particles, their strong optical response near the LSPR frequency making them easily detectable

[37, 95, 96].

The large number of degrees of freedom controlling LSPRs (optical and geometric properties)

mean there is a wealth of research into engineering them for optimised biosensing [18], including

use of chiral plasmonic structures [97] for additional specificity. Furthermore, strong plasmonic

confinement enables the use of surface enhanced Raman spectroscopy (SERS), an inelastic light

scattering process which can allow for particle identification [98, 99, 100]. Particle identification

via SERS can alleviate the problem of non-specific interactions in LSPRs.

While the strong mode confinement allows for increased sensitivity, down to the single

particle level, the use of precise geometries and nanoscale objects make fabrication more

difficult and expensive as compared to SPR. Additionally, the requirement to scan the frequency

typically limits time resolution to the millisecond timescale [101, 102], however recent work with

an intensity modulation detection scheme has pushed LSPR temporal resolution to below a

microsecond (∼ 10ns) [94].

Nanostructured Plasmonic Sensors

Beyond sensors based on simple structures of single plasmonic elements (e.g. a single metal

interface or nanoparticle), a range of nanostructured plasmonic sensors, consisting of multiple

plasmonic elements arranged together so as to couple their modes, have also been developed [103].

Developments in techniques such as lithography allow fabrication with fine scale control, allowing

these nanostructures to be produced with nanometre scale accuracy [104, 105]. Such plasmonic

nanostructures can couple different plasmonic modes by clustering metallic nanoparticles in close

proximity [106], or metallic nanoparticles or nanoislands on a surface [107, 108, 109]. Another

approach to develop nanostructured plasmonic sensors is to insert nanoholes into a metallic

surface supporting plasmonic modes [110, 111]. Regular arrays of the individual plasmonic

components, in both 2 and 3 dimensions, referred to as plasmonic crystals, have been used

for sensing [112, 113, 114, 115, 111], as have random arrays of nanoholes [116, 117]. A major
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benefit of such structures is the additional parameters associated with the structure (e.g. lattice

spacing) allow for tuning of the resonance properties to optimise sensing, in addition to the

tuning of the parameters of the individual components of the array (e.g. nanoparticle size and

shape or nanohole depth). Furthermore, such structures can support multiple resonances. By

monitoring the full spectral range including multiple resonances, up to 10-fold increase in SNR

compared to a single wavelength has been observed [113]. Plasmonic crystals have been shown

to achieve sensitivities comparable to conventional SPR, but allow for simpler optical setups

and easier coupling to optical fibres [103, 110, 114]. While nanostructured plasmonic sensors

can be considered a form of SPR (or LSPR) sensor, the wide range of possible structures, with

a much higher dimension parameter space to explore compared to single element plasmonic

sensors, means that such structures maintain much research interest, though as yet they have

not pushed beyond a single LSPR nanoparticle in terms of single particle sensitivity. Such

structures will be relevant to Chapter 5.

High Q Optical Modes

Plasmonic sensors take the approach of improving sensitivity via increasing the strength of

the interaction between the resonant system and the analyte particle, achieved via strongly

confined electric fields from metals. The use of high Q-factor optical resonators is an alternative

approach, in which the focus is placed on designing a high Q resonance in order to be able to

measure very small shifts [11]. Whispering gallery modes (WGMs) [60] are one such example,

which consist of a dielectric cavity with a closed concave interface. A simple example is a

dielectric sphere, though a range of other geometries exist such as rings, discs, toroids and

microbubbles [11, 118, 119, 120, 121, 122, 123]. Such cavity resonances can achieve very high

Q-factors, up to the order of 1012 [124, 125], allowing for sensitive detection. The narrow line

widths associated with such high Q-factors mean whispering gallery mode sensors have achieved

single particle sensitivity to individual proteins or DNA strands [11, 126, 127, 128]. Sensing is

achieved analogously to LSPR sensing, via varying the wavelength of light incident upon the

cavity. As with LSPR, this scanning of wavelength limits time resolution, though the narrow

linewidth allows faster scanning than LSPR, with τres ∼ 1µs typically achievable [65, 129]. The
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transmitted power exhibits a resonant lineshape dip at the resonance frequency due to power

coupling into the resonant mode. Binding of analyte particles to the cavity can then by deduced

by observing a change in the transmitted power vs. frequency plots. In addition to using shifts in

the resonance frequency [130], changes to the linewidth [63] can also be used to deduce binding.

Restricting detection to just a single feature of a single resonator’s frequency response is not

required, and in fact using the full spectral response of a system consisting of multiple coupled

resonators within so called multimodal sensing allows for greater sensitivity [60]. One such

example involves the monitoring the frequency response of two coupled WGMs. The presence of

the analyte particle breaks the degeneracy of the modes, causing the frequency response to split

in to two modes at distinct frequencies. The splitting of the resonance dips into two distinct

dips thus indicated the presence of the analyte particle, while the frequency difference between

the two split modes can give quantitative information on the number and size of the analyte

particles [64].

In addition to the range of WGM geometries, other photonic resonances are used for sensing.

For example, photonic crystals (PCs), consisting of periodic structures of dielectric objects, can

be designed to have a resonant response which have also been used for biosensing purposes

[131, 132]. The degrees of freedom provided by the choice of lattice structure allow for a degree

of control over the resonance and therefore optimisation for sensing. Much like in SPR, PC

modes can be strongly confined to a surface and give strong light-matter interaction, helping

improve sensitivity [133, 134].

In general, photonic modes are far less localised than plasmonic modes, and as such interact

less with analyte particles. Hybrid plasmonic-photonic mode sensors aim to combine the narrow

linewidth of photonic resonances with the strong light-matter interactions of plasmonic modes

to achieve large perturbations to narrow resonances [127, 135]. They operate on the same

principle as LSPR or WGM sensors, but combine both plasmonic and photonic resonators, and

are capable of extremely sensitive detection, to the level of single DNA strands of molecular

mass ∼ 2kDa [127]. Similarly, coupling of localised plasmonic and PC modes is another strategy

to achieve high sensitivity [134, 136]. One approach based on coupling these resonances is

photonic resonance absorbance microscopy (PRAM), functionalisation of both the plasmonic
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nanoparticles and the surface of the PC means that the binding of analyte particle to the

plasmonic particle ‘activates’ it to be able to bind to the PC surface. Tuning the PC resonance

to coincide with plasmonic resonance of the nanoparticles, the nanoparticles on the PC surface

absorb strongly, allowing them to be seen when imaging the PC surface. Thus individual analyte

particles can be counted as dark spots in the image of the PC surface. Here, the resonance

response provides a large absorbance signal, but the change transduced by the analyte particle

is not in the resonance properties, but rather in the binding properties of the functionalised

plasmonic nanoparticles [136].

2.1.3 Label Free Single Molecule Detection

Table 2.1 summarises the current sensor performance for the various label free biosensors

discussed so far. It can be seen that photonic and localised plasmonic resonances, along with

nanowire and nanopore technology, are currently the most suitable techniques for sensing at a

single particle level, but as yet only nanopore has joined SPR in becoming widely commercially

available. Nanomechanical resonances, while capable of single molecule detection, have even

more precise fabrication requirements while not gaining much in terms of either temporal

resolution or sensor volume in comparison to the optical resonances or other methods capable of

single protein sensitivity. Detection of single, nanoscale molecules remains beyond conventional

SPR, and thus, despite the widespread use commercially, the alternative optical resonances have

received more research interest in the realm of single molecule sensing.

2.2 Single Particle Tracking and Localisation

The ability to track a single biological particle, reconstructing its trajectory from a physical

signal, or localise its position is a valuable tool in studying biological processes, for example

studying membrane transport, interaction between proteins and receptors or biological machines

and motors [157, 158, 159]. Biosensing approaches using discrete changes in a signal arising from

the analyte particle entering a sensing volume or binding to a receptor are not appropriate for

tracking since they do not provide a signal that is a function of the particle position. Multiplexed
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Table 2.1: Summary of performance of common label free biosensing methods. The parameter XLOD

refers to either the limit of detection in analyte concentration, or analyte particle size for systems with
single molecule sensitivity. Sensing volume is expressed as a distance from sensor surface multiplied by
sensor area, * indicates analyte must be tightly attached to surface, Vsens refers to a single sensing
element, multiplexed arrays can increase the effective sensing volume.

Method XLOD τres Vsens
Commercially

available

SPR 144 virus particles/mL [137, 138] ∼ 10ns [139, 140] ∼ 100nm× 25µm2 Yes [19]

LSPR
1 molecule

∼ 50kDa protein [20]
∼ 10kDa protein [141]

∼ 10ns [94] ∼ 10nm×100nm2 No

Photonic
Resonance

1 molecule
∼ 2kDa DNA strand [127]
∼ 10kDa DNA strand [136]

∼ 1µs [65, 129]
∼ 200nm× 2000µm2 (WGM) [142, 143]
∼ 200nm× 10000nm2 (PC) [144, 145]

No

Mechanical
Resonance

1 molecule
0.13kDa C10H8 [146]
∼ 0.5kDa DNA base[147]

∼10ms [146]
∼500µm2* (cantilever)[148]
∼500nm2* (nanotube)[146]

No

Nanowire
1 molecule

∼ 0.5kDa DNA base [149, 150]
∼ 1ms [151, 152] ∼ 1000nm2* [153, 154] No

Nanopore
1 molecule

∼ 1kDa DNA strand [47]
∼ 0.01ms [47] ∼ 4µm× 100nm2 [155] Yes [156]

arrays of biosensors, such as used in surface plasmon microscopy, provide a degree of spatial

information on binding, but in addition to often lacking the resolution and sensitivity to track a

single analyte particle, the binding of the analyte particle to the sensor stops the analyte particle

motion. Single particle tracking (SPT) and localisation requires a different, though closely

related, approach to biosensing. The main difference is that the physical signal transduced by

the analyte particle must vary as a function of particle position in order to allow positional

information to be extracted. In assessing the performance of an SPT or localisation technique,

many of the same considerations as in biosensing remain. In particular, the SNR and SBR of

the signal, specificity (i.e. is the method tracking the correct analyte particle) and labelling

requirements are all important criteria. In addition, due to the extra information required

compared to biosensing, one must assess a method’s spatial and temporal resolution. Spatial

resolution refers to how precisely the method can reconstruct a particle’s trajectory or localise

its position, while temporal resolution, as in the case of sensors, refers to the minimum time

between measurements of the analyte position. The exact biological application will determine

the requirements on these two resolutions, and there is often a trade-off between them. For

example, DNA strands can move through a ∼ 1nm wide membrane pore in ∼ 1ms [160], whereas

viral RNA translocation of a cell membrane (on the order of nanometre thickness) takes ∼ 3

minutes [161].
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2.2.1 Imaging and Microscopy

The most common class of SPT and localisation techniques rely on imaging [162]. A series of

images of the analyte particle are taken and then image analysis is used to extract the particle

trajectory. The accuracy of these methods is determined by both the imaging method and

image analysis algorithm. In the search to optimise both components, a range of approaches

and techniques have been used.

Classical optical microscopy and conventional imaging techniques have a long established

track record in studying biological systems, but ultimately are limited by diffraction [163]. The

spatial resolution is diffraction limited to on the order of λ/2NA where NA = n sin θ is the

numerical aperture of the imaging system, n is the refractive index of the imaging medium, θ is

the maximum half angle at which light from the object plane is collected and λ is the wavelength

of the illuminating light. Since the NA is typically never much larger than 1, imaging using

optical wavelengths gives a diffraction limit of the order of hundreds of nanometres. Thus,

traditional optical microscopy cannot spatially resolve objects on the scale of tens of nanometres

or lower. Decreasing the wavelength to the nanoscale in order to improve spatial resolution is not

feasible due to the high energy photons at such small wavelengths, which will damage biological

samples, and thus the diffraction limit must be overcome to allow for SPT at a nanoscale.

2.2.2 Super-resolution and Localisation Microscopy

The field of super-resolution microscopy has moved microscopy and imaging beyond the diffrac-

tion limit using localisation microscopy. The diffraction limit arises due to the fact that one

can only collect plane wave components of light with transverse wavevector components, k,

below a cut-off k < nk0 sin θ. This Fourier space cut off means the real space image of a point

source (an accurate model for nanometre scale single light emitters or scatterers) at (x0, y0)

will give rise to a point spread function (PSF) centred on (x0, y0) in the image [163]. For a

simple circular aperture, the PSF is the well known Airy disc [164], however more complicated

imaging systems give different PSFs [164, 165]. The PSFs from multiple point sources overlap

for separations below the diffraction limit, hence the inability to resolve sources closer than this.
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If, however, one knows the light arises from a single source, one can fit a PSF to the image and

extract the source position as the centre of the fitted PSF. Thus, while imaging may not be

able to resolve objects beyond the diffraction limit, the position of a single isolated emitter can

be extracted from an image with precision below the diffraction limit. The uncertainty in the

position estimate from this method depends on the noise in the measured intensity distribution.

For shot noise limited measurements, the noise standard deviation is proportional to the number

of photons contained within the PSF, Nsig and the localisation precision scales as ∆x ∼ N
−1/2
sig

[166]. This simple fitting process applied to conventional fluorescence or gold nanoparticle

labelled dark field microscopy setups allows for resolutions of ∼ 1nm [167, 168]. While the

PSF is distributed over the image of 2D plane, and fitting gives 2D localisation of the source,

3D localisation can be achieved in a variety of ways. This includes simultaneously imaging

multiple planes [169], using a z- dependent PSF [165, 170, 171, 172, 173, 174] and holographic

approaches in which phase information is extracted to allow z localisation [175]. Incorporation

of machine learning techniques into the image analysis process has helped improve localisation

precision (see Chapter 6 for a detailed discussion), but ultimately the practical limitations of

experimental noise still apply to these methods [176, 177].

In addition to ensuring a sufficient number of photons are present in the PSF, it is also

important that the intensity distribution that the PSF is being fitted to arises from a single

analyte particle. A collection of nearby sources may be fitted as a single PSF. Distinguishing

nearby sources is important in highly dense media where clusters of nearby sources are com-

mon. Fluorescent microscopy localisation techniques such as stochastic optical reconstruction

microscopy (STORM) or photoactivated localisation microscopy (PALM) use properties of

the fluorophores to ensure nearby sources are distinguishable [178, 179]. In PALM, different

fluorophores are sequentially activated by incident light into a fluorescing state before bleaching

or being switched off. Since only a small fraction of fluorophores are emitting at any one

time, the PSFs are sufficiently separated and can be fitted, with the total image built up by

combining the images for different fluorophores. Similarly, STORM works via having only a

fraction of fluorphores on at any one time, except rather than being switch on/off deliberately

by incident light, they randomly switch on and off in a process called photoblinking. Since
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nearby fluorophores will be on or off at different times, they can be distinguished and localised

separately. These are capable of localising individual fluorophores to nanometre precision, and

by attaching fluorophores that emit different wavelengths at different points on a biological

structure, one can extract information on orientation. Both PALM and STORM separate

the response of nearby fluorophores temporally to allow them to be distinguished. Another

example of a fluorescent super-resolution technique is stimulated emission depletion (STED)

microscopy, which separates the response of nearby fluorphores spectrally [180]. STED uses the

fact that an excited fluorophore, if struck by a photon of the correct energy (or equivalently

correct wavelength, the STED wavelength), can be promoted into a higher energy level than

the standard fluorescent transition, and thus emits a photon that has a longer (red shifted)

wavelength than the standard fluorescent wavelength transitioning from the initial excited state

energy level down to a lower state. Thus these photons can be differentiated from those emitted

at the pump wavelength [180, 181, 182]. By illuminating at the pump wavelength to excite

the fluorophores, and also illuminating with a doughnut shaped beam with low (ideally zero or

extremely close to zero) intensity at the centre at the STED wavelength, so that fluorophores

surrounding the central spot emit at the red-shifted wavelength, one ensures only the central

spot fluoresces at the standard fluorescence wavelength, and thus the position of the light source

can be more tightly localised. Scanning this spot across a sample allows an image to be formed.

The modified resolution, D, is given by [183]

D =
λ

2NA
√

1 + Imax
Isat

(2.7)

where Imax is the maximum intensity of the STED light and Isat is the saturation intensity. While

Eq. (2.7) indicates increasing the STED intensity allows for theoretically unlimited improvement

in resolution, high intensities destroy the fluorophores, known as photobleaching. It can also

potentially damage the sample. By measuring the temporal response as the populations of

excited fluorophores at the two different excited states and different positions decay, one

can improve the resolution [184, 185]. Using plasmonic nanoparticles in STED to give near

field intensity enhancements, while also reducing fluorophore excited state lifetime allows for
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resolutions ∼ 75nm at significantly lower input intensities than required for the conventional

STED setup to achieve such resolutions [186, 187, 188]. Resolutions as low as 2.4nm [189] have

been reported, but typical set ups tend to achieve on the order of 30nm [183]. The fact that the

intensity minimum spot must be scanned to form an image limits STED, as one must trade off

the field of view against temporal resolution owing to the time taken to scan across the desired

field of view. The effects of the scanning have been mitigated via illuminating the sample with

spatially patterned light consisting of many intensity minimum spots, parallelising the STED

image acquisition, allowing for ∼ 2000-fold increased field of view or temporal resolution without

loss of spatial resolution [190].

Another fluorescent microscopy technique based on spatially structuring light to improve

localisation accuracy is minimal photon fluxes (MINFLUX) [191]. The incident excitation light,

much like in STED, has a ring shaped intensity profile with low (ideally zero) intensity at the

centre. A fluorophore located at this zero will not emit any fluorescent light. By scanning this

point across the sample and finding the location of the intensity minimum where the minimum

number of fluoresced photons are detected, fluorophores can be located to a resolution of ∼ 1nm

[191, 192]. Several other fluorescence localisation microscopy techniques exist, all working on a

similar principle of separating fluorophore response along some variable (e.g. in time) so that

nearby PSFs can be distinguished.

Super resolution fluorescence microscopy techniques have pushed spatial resolution down to

the nanometre scale, but do come with several limitations. The most obvious is the requirement

to use fluorescent labels, the drawbacks of which have been discussed. Another problem is the

time resolution of such methods can be limited. The analyte particle must not move significantly

within the detector integration time, as this would change the centre of the PSF [1]. Reducing

the integration time for improved resolution comes at the cost of reducing the photons received

and therefore reduced spatial resolution. As a result, STORM and PALM are restricted to

monitoring relatively slow moving processes with a temporal resolution of ∼ 1s [1, 193]. Note

that STORM/PALM have their temporal resolution reduced compared to that of the camera

taking the measurements owing to the fact several frames corresponding to different fluorphores

being ‘switched on’ must be used to form the total image. Due to the fact it can localise with
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very low numbers of photons, MINFLUX can achieve much better time resolution on the order

∼ 0.4ms for a 2.4nm spatial resolution, while there is a trade off between improving spatial and

temporal resolution [191].

2.2.3 Interferometric Methods

Achieving label free super-resolution imaging is challenging owing to the small number of

scattered photons scattered by nanoscale biological particles in their native form. Interferometric

scattering (iSCAT) microscopy [10, 194, 195, 196, 197] leverages interference in order to enhance

the signal arising from the analyte particle. The electric field scattered by the analyte particle,

Es interferes with a much larger reference field Eb. The resulting power measured by a detector

is

P ∝ |Eb|2 + |Es|2 + 2 Re(Es ·E∗b ). (2.8)

Since |Eb| � |Es|, the interference term is significantly larger than the intensity scattered

directly by the particle, 2 Re(Es ·E∗b )� |Es|2. As a result, the signal arising due to scattering

from the analyte particle is much larger than a technique where only light scattered by the

analyte particle is measured. The downside of this interference approach is the signal must be

detected against a large background intensity. Furthermore, the noise properties in the two cases

are significantly different. In order to elucidate the advantage of an interferometric technique

such as iSCAT as compared to a method where only light scattered/emitted from the analyte

particle is collected, the SBR and SNR of the two methods should be compared. Considering a

detector, e.g. a pixel in charge coupled device (CCD) camera, receiving NT photons per detector

integration time. The major noise sources to consider are shot noise [198] and dark noise (caused

by thermal excitation of electrons in the detector) [199, 200]. The measured photon number

over any given integration time can be modelled as a Poisson random variable, with mean given

by NT , plus a signal independent Poisson distributed dark count with mean Nd [199]. As a

Poisson random variable has a standard deviation equal to its mean, the total noise standard

deviation in such a measurement is given by σ = (NT +Nd)
1/2. There are two limiting cases,

firstly the case where detection is shot noise limited, NT � Nd and dark noise is a negligible
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Table 2.2: Summary of noise metrics for dark field and interference methods.

Metric Exact expression
Shot noise limit

NT � Nd

Dark noise limit
NT � Nd
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S Ns Ns Ns

σ
√
Ns +Nd

√
Ns

√
Nd

SBR Ns/Nd Ns/Nd � 1 Ns/Nd � 1

SNR Ns√
Ns+Nd

√
Ns

Ns√
Nd

In
te

rf
er
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ce S

√
NsNb|cos Φ|

√
NsNb|cos Φ|

√
NsNb|cos Φ|

σ
√
NT +Nd

√
Nb

√
Nd

SBR
√
NsNb|cos Φ|
NT+Nd

√
Ns
Nb
|cos Φ| � 1

√
NsNb
Nd
|cos Φ| � 1

SNR
√
NsNb|cos Φ|√
NT+Nd

√
Ns|cos Φ|

√
NsNb√
Nd
|cos Φ|

contribution to the total noise, and conversely dark noise limited detection, in which NT � Nd

and dark noise is the dominant noise source. If an analyte particle scattering Ns photons into

the detector per integration time, the expression for NT depends differently on Ns between

dark field and interferometric detection. In the non-interferometric case, NT = Ns, whereas

the interferometric method has NT = Nb +Ns + 2(NTNd)
1/2 cos Φ, where Nb is the number of

photons incident on the detector in an integration time due to the reference field and Φ is the

phase difference between the analyte particle scattered field and the reference field. It will be

assumed that Nb � Ns, as is the case in iSCAT. The signal, from which information on the

analyte particle is deduced, is given (for small Ns) in this case by S = |∂NT/∂Ns|Ns. Table 2.2

summarises the signal metrics for a dark field and interference based method.

When both methods are shot noise limited, they achieve comparable SNRs of ∼ N
1/2
s , while

the interferometric method suffers from a much lower SBR. The advantage of the interference

method is seen in the case Ns . Nd � Nb, in which the interference method will be in the shot

noise limit, whilst the dark field method will be dark noise limited (or dark noise will be at

least comparable to shot noise). The shot noise limited interference method has an increased

SNR compared to the dark noise limited dark field SNR, while both have a small SBR. In

fact, regardless of whether an interference based method is shot noise or dark noise limited,

it achieves improved SNR over dark noise limited dark field measurement when Nd > N
1/2
s .
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The ability to achieve shot noise limited measurements even for small Ns below the dark noise

limit is a significant advantage within an interferometric measurement scheme. It should be

noted that, while a signal independent Poissonian dark noise was assumed, the same conclusions

would be reached with any other statistics of signal independent noise added to the shot noise.

Note that the Poisson distribution of the dark noise is not essential to the conclusions, any

generic signal independent noise distribution with mean µd and standard deviation σd would

give analogous results in the shot noise NT � µd, σd and dark noise NT � µd, σd limits.

The improved SNR that iSCAT achieves through interference enables it to track nanoscale

objects, including single viruses and proteins with accuracy down to the order of 2nm [10,

196, 201, 202]. Different illumination and detection schemes have been implemented, including

illumination with SPPs and PC modes to benefit from the enhanced light-matter interaction

associated with the field confinement [203, 204, 205]. The reference field can share a path with

light scattered from the analyte particle to ensure interferometric stability, with no need for

a reference arm [196, 197]. For example, for an analyte particle above a dielectric interface

scattering light incident from below the interface (e.g. a microscope coverslip), the light reflected

from the interface acts as the reference field and interferes with the scattered light from the

analyte. Knowledge of the nature of the scattered field (for example highly directional scattering

for a particle near an interface) and reference field allows for optimising the illumination and

collection of light, for example partially reflective masks have been used to ensure selective

blocking of the reflected reference light while still transmitting the majority of the scattered

light [202]. It should be noted that such an approach will not improve the SNR in shot noise

limited measurements, which is independent of Nb, but rather increases the SBR.

The use of coherent light, required to leverage interference, means other scattering sources

also affect the image. Randomly scattered light from impurities such as surface roughness

features on glass coverslips, or other biological particles present in the sample, also interfere

with the reference and analyte scattered field, causing a so-called speckle pattern consisting of

granular bright and dark spots. This speckle pattern can obscure the signal from the analyte

particle, and any iSCAT method requires an efficient means of removing the speckle background

[10, 194, 202].

44



CHAPTER 2. BIOSENSING AND TRACKING

2.3 Conclusion

In this chapter, techniques for both biosensing and single particle tracking/localisation have

been reviewed. Resonance sensing has been shown to be a powerful label free tool, capable of

sensitivity to single proteins and other nanometre scale objects. SPR sensors are simple, widely

used and easily fabricated, but lack sensitivity down to the single particle level. Other resonance

based sensors can achieve sensitivity at a single particle level, but have more stringent fabrication

requirements. Any resonance based sensing scheme ultimately suffers from the fact that one

must maximise interaction with the analyte particle while also ensuring interactions with the

surrounding environment, causing losses and increasing the resonance width, are minimised.

Nanowire and nanopore technology is also capable of single particle sensitivity, but also require

precise fabrication [206]. While technological and scientific advances reduce the difficulties of

implementing these more precise methods commercially or clinically, any technique that uses a

similar or identical sensor design to SPR sensors but with sensitivity at a single particle level

would allow for single particle biosensors to be produced at the same scale as SPR devices.

Super-resolution microscopy techniques have greatly advanced SPT/localisation, allowing

for nanometre level accuracy in monitoring the motion of single biological objects. Techniques

based on fluorescence microscopy, such as STED or PALM, are extremely powerful but require

fluorescence labelling. The weak interaction of nanoscale particles with light means super-

resolution microscopy of unlabelled analyte particles is challenging, as the low SNR prevents

reliable fitting of a PSF. The use of interference to enhance the signal as in iSCAT is a powerful

technique, allowing shot noise limited measurements even when the intensity scattered by a

particle is smaller than dark noise levels (or other noise sources). As a result, iSCAT microscopy

is capable of label free detection and tracking of single viruses and proteins, but the coherent

nature of such a technique means it is susceptible to image degrading speckle arising from

scattering impurities. Overcoming the issue of speckle could allow interferometric techniques to

operate in complex scattering environments which commonly arise in biology.
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Chapter 3

Sensitivity Analysis

This chapter introduces the proposed biosensing system that will be investigated in the thesis,

and a theoretical sensitivity analysis is performed. In order to do so, several important methods

and results from plasmonics and scattering theory (in particular random scattering theory) will

be introduced, many of which will be used throughout the thesis. Thus this chapter also serves

to lay down the basic modelling framework used to describe the sensing (and, in future chapters,

tracking) system. As such, a logical starting place is to introduce plasmonics, and in particular

the SPP, the electromagnetic surface wave used in SPR sensing and central to the work in this

thesis.

3.1 Surface Plasmon Polaritons

The SPP is an electromagnetic mode that propagates along the interface between a dielectric

medium and a metallic medium. For now just considering a single planar interface (see Fig. 3.1),

such that the region z > 0 is occupied by the dielectric with relative permittivity εd and z < 0

is occupied by a metal with relative permittivity εm (each with corresponding refractive index

nd,m = ε
1/2
d,m), the electric field ESPP(r, t) of SPP mode propagating in the forward x direction
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as a function of position r = (x, y, z)T and time t is given by [13, 14]

ESPP(r, t) =


A+

SPP exp{ikSPPx− κdz − iωt} z > 0

A−SPP exp{ikSPPx+ κmz − iωt} z < 0,

(3.1)

where ω is the frequency and kSPP is the SPP wavenumber. In order that the field remains finite as

z → ±∞, the conditions Re(κd,m) > 0 apply. The amplitude vectors areA+
SPP = A(κd, 0, ikSPP)T

and A−SPP = (εd/εm)A(−κm, 0, ikSPP)T , and A is a constant determined by the intensity at

(infinitesimally above) the interface, I0 = |A+
SPP| (throughout the thesis, the intensity of light

shall be taken to be I = |E|2, ignoring constant prefactors which will normalise out). In general,

SPPs must be p-polarised, i.e. the polarisation vector lies in the plane determined by the

surface normal and the propagation direction, in this case corresponding to the (x, z) plane [13].

This can be seen by the fact that the vectors A±SPP have no y-component. In order to satisfy

Maxwell’s equations and their associated continuity conditions at material interfaces (namely

continuity of parallel components of E and perpendicular components of D = ε(r)ε0E [85]),

the following conditions must also be satisfied

k2
SPP − κ2

d = εdk
2
0 (3.2)

k2
SPP − κ2

m = εmk
2
0, (3.3)

where k0 = ω/c is the free space wavenumber, c is the speed of light in vacuo. Furthermore,

the interface continuity conditions can only be satisfied if Re(εm) < 0, hence SPPs can not be

supported at the interface between two dielectrics [14]. Already, the form of Eq. (3.1) makes

an important feature of SPPs clear, specifically the exponential decay of E away from the

interface at z = 0. This means, compared to free space optical waves with the same total energy,

the energy of the electromagnetic mode is confined to a smaller region and therefore there are

higher intensities at the surface. The length scale the intensity decays over away from the

surface is given by Ld,m = (2 Re[κd,m])−1 in the dielectric (subscript d) or metal (subscript m).

Physically, SPPs arise from the coupling of electromagnetic waves to collective oscillations of

the free conduction electrons in metals [12]. Taken together, Eqs. (3.2) and (3.3) give the well
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Figure 3.1: Geometries supporting SPP modes (left) a single metal-dielectric interface and (right) a
metal film between two dielectrics, the simplest multilayer structure. In both cases, a key feature is
the evanescent confinement of the mode to the metal surface, while propagating parallel to the surface.

known SPP dispersion relation for a single interface as [13]

kSPP =

(
εdεm
εd + εm

) 1
2

k0. (3.4)

While the use of a metallic substrate enables the interface to support SPPs, metals suffer from

ohmic losses, meaning that ε and therefore kSPP are complex quantities. Throughout the thesis,

the notation k′SPP = Re(kSPP) and k′′SPP = Im(kSPP) will be used. The real part defines the

wavelength of the SPP through λSPP = 2π/k′SPP. Similarly, power is absorbed from the SPP as

it propagates and the imaginary part defines the in-plane decay length as LSPP = (2k′′SPP )−1.

The dispersion relation in Eq. (3.4) means that, at all frequencies, k′SPP > ndk0, i.e. the SPP

wavenumber is larger than the photon wavenumber in the dielectric [14]. As a result, photons

cannot couple directly into SPP modes, and more sophisticated structures are required to enable

excitation of SPPs.

3.1.1 Multilayer Structures and SPPs

Multilayer structures can also support SPPs. The simplest example is a thin metallic film

between two dielectrics, shown in Fig. 3.1. In general, in a multilayer structure of thickness d,

with z > 0 occupied by a dielectric medium with permittivity εd, z < −d with permittivity εN

(refractive index nN = ε
1/2
N ) and intermediate layers of permittivity εi (refractive index ni = ε

1/2
i )
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for i = 1, 2, . . . , N − 1, an SPP mode takes the form [13, 207]

ESPP(r, t) =


A+

SPP exp{ikSPPx− κdz − iωt} z > 0[
aiA

i+
SPP exp(κiz) + biA

i−
SPP exp(−κiz)

]
exp{ikSPPx− iωt} layer i

A−SPP exp{ikSPPx+ κNz − iωt} z < −d,

(3.5)

where in each layer the polarisation vector is Ai±
SPP ∝ (∓κi, 0, ikSPP)T . The dispersion relations

from Eqs. (3.2) and (3.3) now apply in each layer, meaning

k2
SPP − κ2

d = εdk
2
0 (3.6)

k2
SPP − κ2

i = εik
2
0 (3.7)

k2
SPP − κ2

N = εNk
2
0. (3.8)

Applying the interface continuity conditions to Eq. (3.5) at each interface and simultaneously

solving Eqs. (3.6)–(3.8) allows one to find the unknown coefficients ai and bi as well as kSPP

and the decay constants κd, κi and κN . While the SPP no longer has the dispersion relation

given in Eq. (3.4), it still maintains most of the same properties as the single interface SPP, in

particular the functional form for z > 0 remains identical, but with different wavenumber and

out of plane decay constants while still satisfying Eq. (3.2) (since it is equivalent to Eq. (3.6)).

The multilayer structure SPP modes do possess a few additional features. Firstly, such

structures can support multiple SPP wavenumbers at a given frequency. For example, in the

dielectric-metal-dielectric structure, the SPPs supported at each interface couple together to

form a long range and short range mode, where the long range mode has a lower proportion of

the intensity distributed in the metal compared to the short range mode, leading to reduced

ohmic losses and therefore a longer LSPP [14, 208, 209]. In addition, while Eq. (3.6) still implies

that the SPP wavenumber is larger than the photon wavenumber in the upper dielectric, it is

possible, by having a permittivity in the lower half-space sufficiently larger than in the upper

half-space (i.e. εN > εd), that photons in the lower dielectric can couple into the SPP mode

when kSPP < nNk0. In this case, when light is incident from below the thin film structure
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at an angle such that the component of the wavevector parallel to the surface matches the

SPP wavenumber, light can couple into the SPP mode. Mathematically, this condition can be

expressed as nNk0 sin ΘSPP = k′SPP, where ΘSPP is the angle between the incident wavevector

and the surface normal at which this coupling occurs. The Kretschmann excitation scheme

is based on this principle, consisting of a thin metal film on a dielectric prism [210]. When

the incident angle is ΘSPP, light couples into the SPP mode propagating along the surface

rather than being specularly reflected. As discussed in Chapter 2, the large decrease in reflected

light intensity and the associated strong dependence of the reflected intensity on the angle of

incidence near ΘSPP forms the basis for SPR sensing.

While multilayer structures allow for coupling of photons from a dielectric into SPPs, such

as via the Kretschmann configuration, they also allow for the reverse process of SPPs coupling

into photons in the lower dielectric and propagating away from the interface. This light radiated

away from the thin film stack is referred to as leakage radiation [13, 211]. The conservation

of the transverse component of the wavevector still applies, and thus leakage radiation is

confined to an angle ΘSPP. This leakage radiation can be seen by considering Eqs. (3.5) and

(3.8) in the case of lossless media where k′′SPP = 0. In this case, Eq. (3.8) gives κN as pure

imaginary when nNk0 > kSPP and therefore the SPP in the lower half space takes the form

∝ exp{i(kSPPx − i|κN |z)} of a plane wave propagating away from the surface in a direction

ΘSPP to the surface normal. In reality, kSPP is lossy and this allows a small range of angles at

which leakage radiation occurs. Leakage radiation will play a significant role in this thesis and

will be discussed in greater detail later in this chapter.

Like any other electromagnetic mode, SPPs interact with matter, for example non-planar

features on the surface [212] or particles near the surface [213]. Such objects can scatter SPPs

into SPP modes propagating in different directions, or into propagating light in the dielectric

half spaces, in addition to absorbing some of the light [213]. The scattering interaction with

matter near the surface is the basis of the sensing system studied in this thesis.
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Figure 3.2: The sensing setup to be investigated. An SPP propagates on a thin metallic film, and
is scattered by surface roughness. An analyte particle, diffusing above the metal film also scatters
the SPP when it comes near the surface. This changes the scattered light distribution, and thus
measuring the change allows one to deduce the presence of the analyte particle. The red arrows are
merely illustrative of scattering and not intended to represent any quantitative information on the
distribution of scattered light. While the structure shown here is a glass-metal-water thin film structure,
the principle can be applied to any layered structure supporting SPPs.

3.2 A Surface Plasmon Scattering Enabled Sensor

The principle of the proposed sensing system is shown in Fig. 3.2. The solution containing the

analyte particles is above a metallic surface supporting SPPs. The surface has fixed scatterers

on the surface, either arising from surface roughness or produced by deliberate fabrication of

scattering objects on the surface [214, 215, 216, 217]. An SPP excited on the metal surface

will be scattered by these surface scatterers to give a light distribution which can be measured.

When an analyte particle comes close to the surface, it too scatters the SPP. The additional

scattered light changes the measured light distribution, from which one can deduce the presence

of the analyte particle. By using a confined plasmonic field, the method benefits from the

high intensity at the surface, resulting in enhanced scattering from scatterers near the surface
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(including the analyte particle) compared to other evanescent wave scattering approaches such

as total internal reflection (TIR) microscopy [218].

While the principle is easily explained, the use of fixed background scatterers should be

explained in more detail. Indeed, one could base a sensor on an identical principle in the absence

of this background random scattering, with the analyte particle illuminated by an evanescent

field analogous to TIR microscopy, except with a plasmonic as opposed to photonic field. Firstly,

however, it should be considered that imperfect fabrication and surface abrasion means the

metallic surface will never be perfectly planar and will have random surface roughness features,

which will scatter SPPs. Since the analyte particles are small and only scatter light weakly, even

a small amount of scattering from the surface will be comparable to the ‘darkfield’ signal from

the particle. As a result, even in studying the ‘darkfield’ version of such a sensor, one would

have to consider the effects of such surface roughness scattering. In addition to some level of

background scattering being unavoidable, the intensity of light measured at a detector is the

coherent sum of light scattered from the fixed background scatterers and light scattered from the

analyte, and thus there is interference between the two. Therefore, a method using background

scattered light can benefit from the advantages of interferometric detection discussed in Section

2.2.3. While iSCAT often uses the reflected field as a reference field to interfere with the field

scattered from an analyte particle, the coupling into the confined SPP mode means very little

light is reflected. The fixed random surface scattering, however, will scatter light away from the

surface which then can interfere with the analyte particle scattered field.

Modelling the sensor system requires a description of scattering from both the analyte

particle and the background scatterers. This can be done using electromagnetic scattering

theory, and it is important to introduce some fundamental principles from this. Furthermore,

since scattering from a randomly rough surface (or a surface with randomly distributed scatterers

fabricated on it) will be studied, random scattering theory in particular must be considered.
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3.3 Electromagnetic Scattering Theory

Fundamentally, electromagnetic scattering theory involves solving Maxwell’s equations in order

to find the total electromagnetic field when a given incident field illuminates an arrangement of

scattering objects. The physical arrangement of scattering objects and a background dielectric

environment is described by a position dependent dielectric function, ε(r) (one can also consider

position dependent permeability for magnetic scattering media, but in the context of this thesis

only non-magnetic media will be considered). From Maxwell’s equations, in the absence of

sources, one can derive a wave equation for the electric field E(r, t) [26, 85]

∇×∇×E(r, t) +
ε(r)

c2
∂2
tE(r, t) = 0. (3.9)

Throughout this thesis, a harmonic time dependence of the form E(r, t) = E(r)e−iωt will be

assumed, where ω is the frequency, meaning Eq. (3.9) reduces to

∇×∇×E(r)− ε(r)ω2

c2
E(r) = 0. (3.10)

Once Eq. (3.10) has been solved forE, the magnetic field follows from usingH =∇×E/(iωµµ0).

The dielectric function ε(r) describes both the background and the scatterers, and it is useful to

separate the two so that ε(r) = εb(r) + εs(r), where εb(r) describes the background dielectric

environment and εs(r) describes the scatterers. The distinction between background and

scatterers is to some extent arbitrary, in the sense that one can always add an arbitrary function

to one of the contributions and subtract the same function from the other without changing

the problem. Generally, the background dielectric environment is one for which the solution

to Eq. (3.10) with ε(r) = εb(r) is known, either analytically or can be calculated numerically

relatively easily. This is because the background solution is used to build the full solution, as

will be described here. Usually, the distinction follows physical intuition as to what one would

call a scatterer, however, different contexts will call for different choices of background, even

within the same problem. In many scattering problems, the background dielectric environment

will be some homogeneous medium such that εb(r) = εb is constant, however, in the case of SPP
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scattering it is more useful to consider the multilayer structure with planar interfaces as the

background. In this case, εb(r) = εb(z) is a piecewise constant function where εb(z) = εi when z

is in the ith layer. The scattering part can take a variety of forms depending on the scatterers

in question. A common and simple example is a collection of objects where the jth object is

made up of a medium of permittivity εj and occupies a volume Vj, in which case the scattering

part of the dielectric function is given by

εs(r) =


εj − εb(r) r ∈ Vj

0 r /∈ Vj.
(3.11)

Given the potentially complicated form of ε(r), very few scattering scenarios permit an exact

solution to Eq. (3.10), but there are general approaches that can tackle a wide range of different

scattering geometries to allow approximate or numerical solutions.

3.3.1 Lippmann-Schwinger and Dyson Equations

A powerful and widely used tool in scattering theory to find solutions to Eq. (3.10) is the

Green’s tensor. The Green’s tensor G(r, r′) for a general dielectric environment ε(r) is defined

for Eq. (3.10) in the same way as for a general linear differential operator by [85, 213, 219, 220]

∇×∇×G(r, r′)− ε(r)ω2

c2
G(r, r′) = Iδ(r − r′) (3.12)

with the boundary conditions that the field either decays or takes the form of an outgoing wave

as r goes to infinity. As Eq. (3.10) is a vector partial differential equation (PDE), G(r, r′) is a

tensor quantity and I is the 3× 3 rank 2 identity tensor (this notation for the identity tensor or

matrix shall be used throughout the thesis). While the tensor nature of G is important, it shall

be left implicit, with the distinction from scalar quantities clear from context. Green’s functions

are widely used throughout physics, with the primary utility lying in the fact that one can use

it to find the solution to an inhomogeneous differential equation with arbitrary source term. In

the context scattering theory, Eq. (3.10) is a homogeneous equation, with the inhomogeneous
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form given with a source function j(r) on the right hand side of Eq. (3.10) such that

∇×∇×E(r)− ε(r)
ω2

c2
E(r) = j(r). (3.13)

The general solution to this inhomogeneous form of the wave equation is given by

E(r) = E0(r) +

∫
dr′G(r, r′)j(r′), (3.14)

where E0(r) satisfies Eq. (3.10) with no source term. While Eq. (3.10) for a scattering problem

does not contain a source term, by bringing the scattering part εs of the dielectric function to

the right hand side, Eq. (3.10) can be written in a form analogous to Eq (3.13) as

∇×∇×E(r)− εb(r)
ω2

c2
E(r) = εs(r)

ω2

c2
E(r). (3.15)

The term on the right containing εs can now be considered to act as a source and Eq. (3.14)

applied. As a result, the total electric field satisfies the following integral equation, known as

the Lippmann-Schwinger equation [221, 222]

E(r) = E0(r) +

∫
dr′G0(r, r′)εs(r

′)
ω2

c2
E(r′), (3.16)

where G0 is the Green’s tensor for the background dielectric environment (i.e. satisfies Eq.

(3.12) with ε(r) = εb(r)). Physically, the first term E0 corresponds to the illuminating field as

in the absence of scatterers εs = 0 and E = E0 is just the illuminating field, while the second

term corresponds to the scattered field. Note that the Lippmann-Schwinger equation, while

based on Eq. (3.14), is fundamentally different in that, while j(r) is a fixed external source of

the electromagnetic field from which one calculates the electric field, the effective source in Eq.

(3.16) contains the electric field that one wants to solve for. Thus, rather than being a solution,

Eq. (3.16) is a reformulation of Eq. (3.10) as an integral equation. One approach to solve this

integral equation is to iteratively substitute E from Eq. (3.16) back in to the integrand on the
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right hand side, resulting in the Born series [24, 223]

E(r) = E0(r) +

∫
d3r′G0(r, r′)

εs(r
′)ω2

c2
E0(r′)

+

∫
d3r′ d3r′′G0(r, r′)

εs(r
′)ω2

c2
G0(r′, r′′)

εs(r
′′)ω2

c2
E0(r′′) + . . .

(3.17)

Truncating a Born series at a finite number of terms gives an approximate expression for the

total electric field in terms of E0. Terminating the series at the first order term in ε is known as

the Born approximation, in which case the field is calculated via

E(r) = E0(r) +

∫
d3r′G0(r, r′)

εs(r
′)ω2

c2
E0(r′). (3.18)

Since the integrand now contains the known field E0 rather than the total field being solved

for, this can be considered an approximate solution, expressing E in terms of known quantities.

Terminating the series at the nth order term in εs is known as the nth Born approximation, and

while often including more terms increases the accuracy of the method, this is not always true

[223]. The various terms in the Born series can be given an intuitive physical interpretation.

A factor of εs(r
′) corresponds to a scattering event at r′ and a factor of G0(r

′, r′′) describes

free propagation in the background from r′′ to r′. Thus, the integrand in the nth order term

describes the incident field being scattered n times before propagating to the observation point,

with the integration then summing over all positions from which scattering can occur. The Born

series can therefore be interpreted as a sum over all scattering events, with the (first order) Born

approximation corresponding to a single scattering approximation. Following analogous steps to

deriving Eq. (3.16), an integral equation relating the Green’s tensor G for the full system with

the scatterers (ε = εb + εs) to the Green’s tensor G0 for the background environment without

the scatterers (ε = εb) can be derived from Eq. (3.12) and is given as follows

G(r, r′) = G0(r, r′) +

∫
d3r′′G0(r, r′′)εs(r

′′)
ω2

c2
G(r′′, r′). (3.19)

While almost identical in form to Eq. (3.16), in the context of Green’s functions, Eq. (3.19) is

referred to as the Dyson equation [224, 225]. Similarly, the iterative infinite series of Eq. (3.19)
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formed by repeated substitution of G in the integrand is referred to as a Dyson series, analogous

to the Born series of Eq. (3.17), and can be interpreted as a sum over all scattering paths in

going from r′ to r. Other scattering quantities, such as the t-matrix [221] or propagator [226]

also have a Lippmann-Schwinger equation and corresponding Born series. The iterative equation

structure of Eqs. (3.16) and (3.19) (and the associated infinite series) comes up repeatedly

in scattering theory and the Green’s tensor G0 propagating between scattering events plays a

fundamental role in these equations.

3.3.2 Green’s Tensor Properties

Due to the importance of G and G0 in scattering theory, it is useful to discuss some properties

of Green’s tensors. In an electromagnetic context, the Green’s tensor physically corresponds

to the field Edip(r) radiated by a point electric dipole at position r′ with dipole moment p,

through Edip = (k2
0/ε0)G(r, r′)p. For this reason, the arguments r and r′ will be referred to

as the observation and source positions. The Green’s tensor Gdir for 3D homogeneous space

(constant ε(r) = ε) has been constructed [221, 227] and is given by

Gdir(r, r
′) =

(
I +

1

εk2
0

∇∇
)
g(r, r′) (3.20)

where g(r, r′) = exp
(
iε1/2k0|r − r′|

)
/(4π|r − r′|) is the scalar Helmholtz Green’s function and

the ∇ operator acts on the r coordinate. Owing to the translational invariance, Gdir(r, r
′) =

Gdir(r−r′) depends only on the difference between the source and observation positions. Similarly,

the homogeneous nature means that the Green’s tensor only depends on the magnitude |r − r′|

of the separation.

While the planar multilayer Green’s tensor does not have a simple analytic form like Gdir,

there are still several properties it possesses that should be emphasised. While the variation

in ε(z) along the z axis breaks the full 3D translational invariance, the system still maintains

transverse translational invariance in the ρ = (x, y) plane. This implies that G only depends

on the separation in this plane, i.e. G(ρ, z,ρ′, z′) = G(ρ − ρ′, z, z′) where ρ = (x, y) and

ρ′ = (x′, y′) are the transverse components of r and r′ respectively while z and z′ are the
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respective z-components. Excluding a small number of simple cases (for example the interface

of a dielectric and a perfect conductor), the Green’s function for a multilayer structure does

not have a simple analytic expression in real space, but the 2D (x, y) Fourier transform can

be found analytically using Fresnel coefficients [228]. Throughout the thesis, the (2D) Fourier

transform pair of a function F (ρ−ρ′) shall be denoted F̃ (k‖) with the pair related according to

F (ρ− ρ′) =

∫
F̃ (k‖) exp

[
ik‖ · (ρ− ρ′)

] d2k‖
(2π)2

(3.21)

F̃ (k‖) =

∫
F (ρ− ρ′) exp

[
−ik‖ · (ρ− ρ′)

]
d2ρ. (3.22)

Note that k‖ is a 2D wavevector with dimensions of inverse length. Considering a source position

above the thin film stack, z′ > 0, the Green’s tensor for a multilayer stack can be expressed in

terms of direct, reflected and transmitted components as follows

G(r, r′) =


Gdir(r, r

′) +Gref(r, r
′) z > 0

Gtr(r, r
′) z < −d

(3.23)

where Gdir is given by Eq. (3.20) for the upper dielectric medium, Gref describes reflection from

the multilayer stack and Gtr describes transmission through the multilayer stack, as shown

in Fig. 3.3. By taking the plane wave (Weyl) expansion of Gdir, decomposing into s- and

p-polarised components and reflecting or transmitting each component using the generalised

Fresnel coefficients, one finds that, for a source position z′ above the multilayer stack, the Fourier

space direct, reflected and transmitted part of the Green’s tensor are [213, 228]

G̃dir(k‖; z, z
′) =

i

2kz

[
eikz |z−z

′|(ês(k‖)ê
†
s(k‖) + êp±(k‖)ê

†
p±(k‖))

]
(3.24)

G̃ref(k‖; z, z
′) =

i

2kz

[
eikz(z+z′)(rs(k‖)ês(k‖)ê

†
s(k‖) + rp(k‖)êp+(k‖)ê

†
p−(k‖))

]
(3.25)

G̃tr(k‖; z, z
′) =

i

2kz

[
eikzz

′−ikzN (z+d)(ts(k‖)ês(k‖)ê
†
s(k‖) + tp(k‖)ê

N
p−(k‖)ê

†
p−(k‖))

]
. (3.26)

The parameters kz = (k2
d − k2

‖)
1/2 and kzN = (k2

N − k2
‖)

1/2 correspond to the z component of

the wavevector with transverse component k‖ in the upper and lower dielectric respectively,

58



CHAPTER 3. SENSITIVITY ANALYSIS

Figure 3.3: Representation of the direct, reflected and transmitted contributions to the multilayer
Green’s tensor G(r, r′) that propagates a dipolar source at r′ to the field at observation positions
above (r) or below (r̃) the multilayer structure.

with kd = ε
1/2
d k0 and kN = ε

1/2
N k0 being the wavenumbers in the uppermost and lowermost

media. The unit vectors ês(k‖) and êp±(k‖) correspond to the s- and p-polarised unit vectors

for a plane wave in the upper dielectric with wavevector k‖ ± kzẑ (the + sign corresponds to

waves travelling in the positive z direction and the − sign to those travelling in the negative z

direction) and are defined by

ês(k‖) = k̂‖× ẑ (3.27)

êp±(k‖) =
1

kd
(k‖ẑ ∓ kzk̂‖). (3.28)

Similarly, the vector êNp± is the (upward and downward propagating) p-polarised unit vector

in the lowermost medium and is given identically to Eq. (3.28) but with kd and kz replaced

by kN and kzN . The s-polarised vector depends only on the transverse component k‖ of the

wavevector and thus is the same for upward and downward propagating waves as well as in

different media. As such, no distinction is required for different media or propagation direction.

Note that in Eq. (3.24), the sign chosen for the êp± factors depends on the relative position of

the source and observation points. Namely, the upper sign is chosen for z > z′ and the lower

sign for z < z′. The quantities rs,p(k‖) and ts,p(k‖) are the generalised Fresnel reflection and
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transmission coefficients for s- and p-polarised plane waves in the uppermost medium. These

describe the amplitude of the reflected and transmitted wave from the whole multilayer stack

and can be found by applying the interface continuity conditions of Maxwell’s equations at

each interface [228, 229]. Note that the form of G considered here is only valid for source and

observation points outside the multilayer structure (while the case here has assumed z′ > 0,

the z′ < −d case is clearly of the same form by simply inverting the z-axis, with the Fresnel

coefficients for transmission/reflection from the other side of the stack). It is possible to find

G̃ for sources and observation points inside the layers −d < z, z′ < 0 by the same process of

reflecting/transmitting the plane wave components of Gdir from the layer in which the source

lies to the observation point. For such source or observation points, however, the Green’s tensor

cannot be expressed in terms of one overall generalised reflection and transmission coefficients

for the whole system. For the applications considered in the thesis, the source and observation

point will lie outside the layers.

The Fresnel coefficients depend on the permittivity and thickness of all the layers and can

provide valuable information on the optical response of a given structure, in addition to their

use in Eqs. (3.25) and (3.26) to calculate the Green’s tensor. In particular, the poles of the

Fresnel coefficients on the complex plane correspond to the wavevectors of the guided modes of

the multilayer structure [230, 231, 232]. In the case of structures supporting SPPs, this means

rp and tp have poles at k‖ = kSPP (the poles occur in the p-polarisation coefficients as SPPs

are p-polarised). In addition to providing an approach to calculating kSPP for arbitrary planar

structures [231], this fact has significant consequences on the spatial distribution of scattered

light in systems supporting SPPs, especially in the far field.
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Far Field Green’s Tensor

Using the inverse Fourier transform, G(r, r′) can be found from Eqs. (3.24)–(3.26) via

G(r, r′) =

∫
d2k‖
(2π)2

G̃(k‖; z, z
′)eik‖·(ρ−ρ

′)

=


∫

d2k‖
(2π)2

[
G̃dir(k‖; z, z

′) + G̃ref(k‖; z, z
′)
]
eik‖·(ρ−ρ

′) z > 0∫
d2k‖
(2π)2

G̃tr(k‖; z, z
′)eik‖·(ρ−ρ

′) z < −d
(3.29)

In all but the most simple of cases (e.g. a single perfectly reflecting interface), the inverse Fourier

transforms given in Eqs. (3.25) and (3.26) required to calculate the real space Green’s tensor

cannot be calculated analytically. The Fourier space expressions are still valuable in allowing

numerical calculation of G(r, r′) via numerically performing the inverse Fourier transform in

Eq. (3.29). Beyond this, the Fourier space representation is important in deriving an analytic

form of the real space Green’s tensor in the far field. In the context of multilayer structures,

far field is defined as the region where observation point is far away from the upper or lower

interface (z = 0 and z = −d planes respectively), on the scale of the wavelength, |z| � λ0. By

performing a stationary phase approximation [233] to Eq. (3.29), one finds G∞ is given by [228]

G∞(r, r′) =


−ikd cos θG̃(ko‖; 0+; z′)

eikdr

r
e−iko‖·ρ

′
z > 0

ikN cos θG̃(ko‖,−d−; z′)
eikNr

r
e−iko‖·ρ

′
z < −d,

(3.30)

where θ is the polar angle of the position r in spherical coordinates and ko = ε(z)1/2k0r̂ =

ε(z)1/2k0(x/r, y/r, z/r)T is a wavevector in the direction of the observation point with magnitude

given by the wavenumber in the medium the observation point lies in. The notation h± in the

argument of the Green’s tensor denotes the limit as the argument approaches h from above

(plus sign) or below (minus sign). Since the far field Green’s tensor is proportional to the

Fourier space representation, the Fresnel reflection and transmission coefficients determine the

distribution of light in the far field radiated by a dipole. In particular, a dipole radiates a

higher intensity of light to an observation position with ko‖ near a pole of rs,p and ts,p since

|G∞p| 2 ∝ |G̃p|
2

grows large near a pole. Physically this occurs as light radiated from the
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dipole with the transverse component of the wavevector matching that of a guided mode couples

strongly into the mode (e.g. SPPs), which then couples strongly into outgoing photons with

the same transverse component, propagating in the direction of ko. Note, however, that just

because a multilayer stack supports a guided mode and there are poles of the Fresnel coefficient

does not necessarily imply such directional dipole intensity patterns. Firstly, the poles are in the

complex plane, while ko‖ is a real vector. Therefore, if the poles are not near the real axis on the

complex plane (i.e. they have large imaginary parts), then no observation point can be said to

be near the pole and therefore there is no direction with an especially large value of the dipolar

intensity ∝ |G∞p|2. More generally, the squared magnitude of a function f(z) ∝ (z − a− ib)−1

with a (simple) complex pole a+ ib is Lorentzian along the real line centred on a and width b

|f(x)|2 ∝ 1

(x− a)2 + b2
,

meaning that as a mode becomes more lossy and the imaginary part of the mode wavenumber

increases, the high intensity peak in the dipole radiation pattern broadens over a wider range

of angles. A second reason that not all guided modes give highly directional dipolar radiation

is that the guided modes may not couple to propagating modes. To see this mathematically,

note that ko‖ ≤ ko = ε(z)1/2k0. This means that, for a multilayer system supporting a guided

mode, if the pole in rs,p and ts,p at kguided occurs at a real part much larger than ε(z)1/2k0

(i.e. k′guided > ε(z)1/2k0), the intensity peak will not be seen. Physically, guided modes with

transverse wavenumbers larger than the photon wavenumber couple to evanescent modes in the

dielectric, which exponentially decay and are not transmitted to the far field. In the case of

SPPs (kguided = KSPP), it has already been established that k′SPP > kd, meaning that the pole

does not give rise to a peak in the dipole radiation pattern in the upper dielectric. As discussed

in Section 3.1.1, a multilayer configuration with sufficiently large εN does allow coupling of

SPPs out into the lower dielectric in the form of leakage radiation, and thus the dipole radiates

strongly in the direction of θ = ΘSPP corresponding to the pole of tp. This ring has finite width

∆(cos θ) ∼ k′′SPP since the mode is lossy and the pole does not lie exactly on the real axis. The

ring is known as the leakage radiation ring. This feature and its dependence on the properties
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of the Fresnel coefficient poles is demonstrated in Fig. 3.4, which shows the dipole intensity

patterns Idp(θ, φ; r′) = (k4
0/ε

2
0)|G0(r, r′)p|2 (normalised to a maximum of 1) for some different

gold film structures with r′ = (0, 0, 50nm)T . In the top row of Fig. 3.4, the z oriented dipole

shows strongly directional radiation into the angle θ = ΘSPP (shown by the dashed blue line) at

which ko‖ = k′SPP and there is a pole in tp. The peak is less prominent in the in-plane dipole

case, as while the z oriented dipole only radiates p-polarised light, some of the light radiated by

the in-plane dipole is s-polarised and doesn’t couple to SPPs. The radiation in the upper half

space is more diffusely distributed over a wider angle since the SPP mode cannot couple into

this half space. The second row shows an equivalent plot for λ0 = 600nm. At this wavelength,

gold absorbs light more strongly, giving a more lossy SPP (larger k′′SPP) and as a result, the peak

around ΘSPP is broader. In the water-gold-water case (bottom row of Fig. 3.4), the SPPs cannot

couple into either space and the scattering is diffuse in both half spaces. The confinement of

the dipolar radiated light to a narrow angular range, a manifestation of leakage radiation, has

significant consequences for the scattering of SPPs, and therefore the proposed sensing setup.

3.3.3 Random Scattering Theory

The scattering theories described so far give a framework to calculate the scattered field from

a known scattering configuration. It is very common, however, that the exact scattering

configuration is not know. For example, in the context of the proposed sensor, the exact

surface roughness profile or arrangement of scatterers on the surface is not generally known

and would be impractical to measure for any given sensor surface. A more practical approach

is to relate statistical properties of the scattering configuration, for example the mean square

height deviation of the surface roughness or the density of scatterers on the surface, to statistical

properties of the scattered light. Statistical approaches to describe light scattering are well

established [21, 25, 234]. The same approaches, such as Eqs. (3.16) and Eq. (3.19), can be

used, but rather than having a fixed scattering configuration from which a field is calculated,

the scattering configuration (i.e. εs(r)) is treated as a random variable, and therefore the

scattered field is also a random variable. In this context, by modelling εs(r) as a random

variable, scattering theory equations such as Eqs. (3.16) and (3.19) now provide a route to
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Figure 3.4: Far field dipole radiation patterns Idp(θ, φ)/maxθ,φ(Idp) normalised to a maximum value
of 1 for a dipole oriented in the x, y and z directions 50nm above a dielectric-gold-dielectric thin film
structure with d = 50nm thick gold film. The three variants of the structure plotted here are (top
row) glass-gold-water at 650nm, (middle row) water-gold-water at 650nm and (bottom row) glass-gold
water at 600nm. The left column shows plots of

∫ 2π
0 Idp(θ, φ)/maxθ,φ(Idp)dφ to give the total intensity

radiated in the θ direction, while the right column shows Idp(θ, φ = 0) in the (x, z)-plane. Note that
the θ-integrated intensity is identical for the in-plane x and y oriented dipoles, and hence only one is
plotted.
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link the statistics of the field random variables to the statistics of the scattering configuration,

defining the statistics of the field or Green’s tensor, and hence also the statistics of quantities

such as the intensity I = |E|2 derived from them. In most cases, deriving an exact statistical

distribution for such quantities (e.g. E, G or I) is not possible analytically, and instead methods

have been developed to find (approximate) expressions for the moments of the field (or Green’s

tensor) [221, 24, 26]. Since E(r) is a random complex vector function, the definition of moments

needs to be properly defined, as opposed to a real scalar random variable X where one can

simply define the nth moment as 〈Xn〉 (throughout this thesis, angled brackets shall denote

averaging over realisations of scattering disorder). The nth order moment of the field (or indeed

any other function) will be taken to refer to any average of products of n copies of components

of E and its complex conjugate E†, possibly evaluated at different positions. While this leaves

many possible different moments at a given order, only some moments are of interest physically,

such as the mean intensity 〈I(r)〉 = 〈|E(r)|2〉, field autocorrelation 〈E(r)E†(r′)〉 or intensity

autocorrelation 〈I(r)I(r′)〉 = 〈|E(r)|2|E(r′)|2〉. In order calculate these moments using Eq.

(3.17), the Born expansion is substituted for each occurrence of the field, and thus the moment

can be expressed as the sum of integrals of products of Green’s tensors and some moment of

εs(r). These moments are known from the statistical model of εs(r) (a common choice is a

Gaussian random process, which will be discussed in Section 3.4.1). Even though the individual

terms contributing to the moment can be expressed in terms of integrals of known functions,

there are an infinite number of different terms, which are often conveniently represented in

diagrammatic form. In certain limits (e.g. the average distance propagated between scattering

events being much larger than a wavelength [26]), one can neglect classes of diagrams and find

approximate analytic results for the moments. These approximations and the diagrammatic

representations will be discussed in full detail in Chapter 5, which deals with multiple scattering

effects. Since this chapter considers only the single scattering regime, it suffices to say that,

since the Born series is truncated with a single scattering Born approximation, there are only

a finite number of integrals to be summed to find any moments. While quantities averaged

over scattering realisations can provide information about a scattering system, it should be

noted, however, that a given static scattering configuration deterministically results in the
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spatial dependence of the field E(r), and that this spatial distribution need not be similar to

the average over many scattering configurations. The need for statistical modelling arises from

the lack of knowledge of the scattering configuration as opposed to something fundamentally

random in the system. In ergodic systems, averaged quantities (either spatially or temporally

averaged in dynamic random media in which the scattering configuration changes with time) are

equivalent to the averages over realisations [234]. While temporal ergodicity applies to dynamic

random media [235, 236], spatial ergodicity applies much less commonly [237, 238]. Even in the

absence of ergodicity, the averaged quantities can be useful to understand the distribution of

values one could observe such as the spread and central tendency.

It can be useful to link the statistics of the scattering configuration to those of the scattered

light, especially when the scattering medium is well understood such that an accurate statistical

model of it can be developed, however there are many universal features of randomly scattered

light that apply almost independent of the detailed statistics of the scattering process. Such

randomly scattered light has a distinctive granular pattern of bright and dark spots known as

a speckle pattern. This arises due to the fact that the randomly scattered waves can either

add up in phase (giving a bright spot) or out of phase (giving a dark spot). Owing to this

random interference effect, many statistical properties of speckle patterns can be understood

and modelled through random phasor theory without the need to resort to modelling of the

scattering process. To see this, consider the ith component Ei of the electric field randomly

scattered from some arbitrary random scattering configuration, which can be expressed [25]

Ei(r) =
∑
s

As(r)eiΦs(r) (3.31)

where As and φs are the phase and amplitude gained by a wave propagating through scattering

sequence s (i.e. a sequence of n scatterers with positions {r1 . . . rn}, with the sum over all

possible n and all positions) and are random variables). Under the approximation that the

phase and amplitude of different scattering paths are independent, and also that As and Φs are

uncorrelated and Φs is uniformly distributed from 0 to 2π [21], Eq. (3.31) becomes a sum over a

large number of independent random variables. One can therefore derive, by applying the Central
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Limit Theorem, a Gaussian distribution for the field amplitude component Ei. For polarised

light, the Gaussian field distribution results a exponential distribution for the intensity, with

probability density function (PDF) P (I) ∝ exp(−I/〈I〉), 〈I〉 being the mean intensity averaged

over speckle realisations [21]. Partially polarised light results in a modified intensity PDF [21].

A feature of this negative exponential intensity distribution, known as Rayleigh statistics, is

that the standard deviation of the intensity is equal to the mean σI = 〈(I − 〈I〉)2〉1/2 = 〈I〉.

This result is often stated in terms of the contrast C defined by C = σI/〈I〉. Under Rayleigh

statistics, fully polarised speckle has C = 1, while partially polarised speckle has reduced contrast

of the form C = [(1 + P2)/2]1/2 where P is the degree of polarisation [21]. A wide range of

speckle patterns exhibit Rayleigh statistics, even when generated by scattering environments of

significantly different nature. It is possible, however, for effects such as strong multiple scattering

or absorption to break down the assumptions on the phasor sum and give rise to non-Rayleigh

statistics within the speckle pattern [239, 240, 241, 242, 243].

3.4 Scattering of SPPs

Now that the theoretical groundwork has been established, attention can be turned to describing

the scattering occurring in the proposed sensing setup (Fig. 3.2). In this context, the background

environment is defined to be the multilayer structure with planar interfaces, and the background

Green’s tensor G0 is defined with respect to this. Where possible, the multilayer structure will be

left general, but specific structures will be introduced and studied where required. The incident

field E0 is taken as a plane wave SPP propagating in the x direction. Since it is important to

consider the effects of absorption within plasmonic systems, two forms of the incident wave will

be considered, a lossless and lossy form. These can both be expressed in the form

E0(r) = A(x)ESPP(r) (3.32)

In the lossless case, A(x) = 1, however, for lossy waves, the exponential decay exp(−k′′SPPx)

leads to a divergence in the field as x→ −∞. To avoid this, it is assumed the wave is launched

from x = 0, and therefore vanishes for x < 0. Thus, A(x) = Θ(x) for lossy SPPs with k′′SPP 6= 0,
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where Θ(x) is the standard Heaviside step function defined to be 1 for x ≥ 0 and 0 otherwise.

Two scattering configurations must be considered; scattering with no analyte particle near

the surface and scattering with an analyte particle near the surface. Since measurement of light

in the near field close to the surface of the multilayer stack is much more challenging than in

the far field, most of the focus will be on studying the scattered light in the far field.

3.4.1 Scattering from a Rough Surface

With no analyte particle, the scattering from the rough surface is the only effect to be considered.

The uppermost rough interface is defined by the surface z = ζ(ρ), rather than the smooth case

where the interface is defined by the z = 0 plane, where ζ(ρ) is the surface roughness profile.

As a result, the dielectric function ε(r) is now given by

ε(r) = εb(z) + εr(r). (3.33)

The background εb(z) corresponds to the planar multilayer structure with εi being the permit-

tivity in the ith layer such that

εb(z) = εi z ∈ layer i. (3.34)

The scattering perturbation due to surface roughness, εr(r), is [244, 245, 246]

εr(r) = (εm − εd) (Θ(ζ(x, y)− z)−Θ(−z)) (3.35)

Here, the εd,m are the dielectric constants of the dielectric and metal respectively on either side

of the interface. It has been assumed that ζ > −d1, where d1 is the thickness of the uppermost

metallic layer, such that the surface never dips below the first layer. Additionally, it is assumed

there are no overhangs so that ζ is a single valued function. The exact form of εr is not very

easy to work with mathematically, and it is convenient to expand to first order in ζ to give

εr(r) ≈ (εm − εd)δ(z)ζ(x, y) +O(ζ2). (3.36)
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The expansion to first order in ζ is significantly easier to work with mathematically, and is a

good approximation provided the typical height variation is much smaller than the free space

wavelength λ0 = 2π/k0, as is usually the case for rough metal surfaces [247, 248]. Approaches

avoiding this expansion have been developed, for example using curvilinear coordinate transfroms

[249]. Such methods, however tend to mix the effects up to a given order of ζ into different terms,

whereas the expansion here ensures all effects up to O(ζ) are accounted for, while extending the

expansion to higher order terms offers a systematic approach to account for different orders

[244]. Using this first order expansion in Eq. (3.36), the field scattered from the surface, Eζ , is

given by Eq. (3.18) with εs = εr as

Eζ(r) = (εm − εd)
ω2

c2

∫
d2ρ′G0(r,ρ′, z′ = 0)ζ(ρ′)E0(ρ′, z′ = 0). (3.37)

Due to the δ(z) in Eq. (3.36), the integral is evaluated over the 2D z′ = 0 plane, and from

now on the z′ = 0 will be implicitly implied by the ρ′ 2D argument. While this restriction to

a planar interface simplifies the integration, there is some subtlety with regards to the value

of the Green’s tensor and incident field at the interface when z′ = 0. Since these quantities

(specifically their normal components) are discontinuous at the interface, the value at z′ = 0 is

not well defined. It has been shown that, correct to first order in the roughness, that one should

use the limit from above, z → 0+, for one of G0 or E0 and the limit from below, z → 0−, for

the other [250]. It does not matter whether one uses G0(r,0
−)A+

SPP or G0(r,0
+)A−SPP, since

the boundary conditions on G0 and E0 ensure they are equivalent. Using the far field form of

the Green’s tensor from Eq. (3.30) and substituting for E0 results in

Eζ(r) = (εm − εd)
ω2

c2
G0(r,0−)A+

SPP

∫
d2ρ′A(x′)ζ(ρ′) exp

(
−i∆k‖ρ′

)
exp (−k′′SPPx

′) (3.38)

where ∆k = εb(z)
1/2k0r̂ − k′SPPx̂ is the wavevector shift between the incident SPP wavevector

and ko (the outgoing wavevector propagating towards r in the far field) and ∆k‖ is its transverse

component. The scattered field is dipolar like, arising from the G(r,0−)A+
SPP factor, but

modified by the random nature of the surface due to the integral. This integral is a continuous

analog of the random phasor sum in Eq. (3.31). In the lossless case, k′′SPP = 0 and A(x′) = 1,
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this integral reduces to a Fourier transform of the surface profile, ζ̃(∆k‖). With a relatively

simple link between the surface profile and the scattered field established, a statistical model of

the surface profile can be introduced.

Surface Roughness Statistics

The surface is assumed to be a zero-mean Gaussian random process, a common model random

for surface roughness [220, 244, 251]. This means the surface profile statistics are defined by

〈ζ(ρ)〉 = 0 (3.39)

〈ζ(ρ)ζ(ρ′)〉 = h2C(ρ− ρ′), (3.40)

where angled brackets denote averaging over an ensemble of random surface realisations and

h2 = 〈ζ(ρ)2〉 is the root mean square (RMS) height deviation, parameterising the typical

height of a peak or depth of a trough in the surface profile. The function C(x) is the surface

correlation function, normalised so that C(0) = 1. As C(x) depends only on the separation

ρ− ρ′, statistical homogeneity of the surface has been assumed, meaning that all points have

the same probability distribution for the height and translational invariance is restored after

averaging over realisations. One form of C commonly used is C(x) = exp
(
− |x|

2

2a2

)
[14, 251, 252],

which has built in the additional assumption of statistical isotropy, so that C(|x|) only depends

on the magnitude of the separation, though anisotropic forms may be relevant [253]. The width

of the function is given by the surface correlation length, a, which parameterises the typical

width of a peak/trough on the surface. For typical rough metal surfaces, the correlation length is

much shorter than the optical wavelength, a� λ0 [247, 248]. In this case, a δ-function limit can

be taken so that C(ρ− ρ′) = 2πa2δ(ρ− ρ′). The convenience of this form in deriving analytic

results means it will be commonly used in this chapter. For a Gaussian process, Eqs. (3.39) and

(3.40) entirely define the statistics of the surface, as any higher order moment with p factors

of ζ either vanishes (p odd) or can be split into a sum over all possible products of pairwise

correlations by Wick’s theorem (also referred to as Isserlis’ theorem) (p even) [24, 254, 255]. For
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example, 〈ζ(ρ1)ζ(ρ2)ζ(ρ3)〉 = 0 while the fourth order moment can be split according to

〈ζ(ρ1)ζ(ρ2)ζ(ρ3)ζ(ρ4)〉 = 〈ζ(ρ1)ζ(ρ2)〉〈ζ(ρ3)ζ(ρ4)〉+ 〈ζ(ρ1)ζ(ρ3)〉〈ζ(ρ2)ζ(ρ4)〉 (3.41)

+ 〈ζ(ρ1)ζ(ρ4)〉〈ζ(ρ2)ζ(ρ3)〉. (3.42)

Since Eq. (3.38) gives a relationship between ζ and Eζ , the statistics of Eζ are also defined

by Eqs. (3.39) and (3.40). More precisely, the fact that Eq. (3.38) is linear in ζ means any

moment of Eζ is a linear combination of moments of ζ, which can be calculated through use of

Wick’s theorem and Eq. (3.40).

Scattered Field Moments

The linear relationship between Eζ and ζ means Eζ is also a Gaussian random process defined

by its first and second moments. Therefore it is valuable to calculate these moments. From

Eqs. (3.37) and (3.39), it immediately follows that 〈Eζ(r)〉 = 0. This, of course, does not mean

there is no scattered field, but rather, since Eζ is a complex quantity, the field at r for different

realisations of the surface cancel out on average. This is true also for a fully developed speckle

field [25]. Since Eζ(r) is a complex random vector, there exist two second moment matrices

given by 〈E(r)E†(r′)〉 and 〈E(r)ET (r′)〉. The first of these moments is known as the mutual

coherency matrix and finds use in the study of partially polarised light [256, 257]. The (i, j)

elements of these matrices, corresponding to the mean of the product of the ith component and

jth component of the field, are

〈Eζ,i(r)E∗ζ,j(r
′)〉 = |B|

∫
d2ρ1d

2ρ2

∑
k

G0,ik(r,ρ1)E0,k(ρ1)C(ρ1 − ρ2)
∑
l

G∗0,jl(r
′,ρ2)E∗0,l(ρ2)

(3.43)

〈Eζ,i(r)Eζ,j(r
′)〉 = B

∫
d2ρ1d

2ρ2

∑
k

G0,ik(r,ρ1)E0,k(ρ1)C(ρ1 − ρ2)
∑
l

G0,jl(r
′,ρ2)E0,l(ρ2).

(3.44)

The constant prefactor B = (εm − εd)2h2k4
0 has been introduced. Index notation is used, with

Eζ,i denoting the ith Cartesian component of the vector Eζ (and similar for E0,i) while G0,ij
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denotes the (i, j) element of the tensor G0. Using the far field result of Eq. (3.38), Eqs. (3.43)

and (3.44) when r and r′ are in the far field can be expressed as

〈Eζ,i(r)E∗ζ,j(r
′)〉 =|B|

∑
k,l

G0,ik(r,0
−)A+

SPP,kG
∗
0,jl(r

′,0−)A+∗
SPP,lI(∆k‖,∆k

′
‖) (3.45)

〈Eζ,i(r)Eζ,j(r
′)〉 =B

∑
k,l

G0,ik(r,0
−)A+

SPP,kG0,jl(r
′,0−)A+

SPP,lI(∆k‖,−∆k′‖), (3.46)

where the integral function I(q, q′) has been defined as

I(q, q′) =

∫
d2ρ1d

2ρ2C(ρ1 − ρ2)A(x1)A(x2) exp [−i(q · ρ1 − q′ · ρ2)] exp [−k′′SPP(x1 + x2)]

(3.47)

The transverse wavevector shift ∆k‖, as defined in Eq. (3.38), is a function of observation

position, ∆k‖(r), though this dependence is left implicit. Similarly, ∆k′‖ is defined in the same

manner but for the second observation position r′, i.e. ∆k′‖ = ∆k‖(r
′). The results of Eqs.

(3.45) and (3.46) will form the building blocks to study the statistical properties of the speckle

pattern formed by scattering from random roughness. Even on their own, these results reveal

some interesting properties about the speckle pattern which bear commenting on.

Non-Circular Statistics

A complex random variable Z is said to be circular if eiθZ and Z are identically distributed

for any phase shift θ [258]. A speckle field that obeys Rayleigh statistics is a relevant example

of a circular complex random variable. Circularity implies several further properties of Z,

for example the independence of the phase and amplitude distribution, and a uniform phase

distribution over [0, 2π]. Due to the fact 〈Z2〉 = exp(2iθ)〈Z2〉 for any θ, the pseudo covariance

vanishes, 〈Z2〉 = 0, for any circular complex random variable. From Eq. (3.46), it can be

concluded that 〈Eζ,iEζ,j〉 6= 0 unless I(∆k‖,−∆k′‖) = 0, ignoring the trivial case where the

Green’s tensor factors vanish which simply means no light is scattered to r or r′. Circularity

of the speckle field is a necessary (though not sufficient) condition for Rayleigh statistics. It

has been shown that absorption [241, 242] or multiple scattering effects [239, 240] can lead to
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non-circular or non-Rayleigh statistics. Clearly, as Eq. (3.46) was derived under the single

scattering Born approximation, the non-circularity here cannot arise due to multiple scattering

effects. To understand the physical origin of the non-circularity here, it is useful to consider

the simplification of Eq. (3.47) under two approximations. Firstly, the short surface correlation

length δ-function approximation, with a lossy wave (A(x) = Θ(x)), which simplifies to integral

to

I(∆k‖,∆k
′
‖) =2πa2

∫ ∞
0

dx1

∫ Ly
2

−Ly
2

dy1 exp
{

[−i(∆kx −∆k′x)− 2k′′SPP]x1 − i(∆ky −∆k′y)y1

}
.

(3.48)

Note that the y1 integral has been restricted over a finite width Ly. In general, the plane

wave SPP is considered to be infinite in width, and Ly →∞ would render the y1 integral as

a δ-function. Any real physical system, however, would have a finite width, either due to the

finite illumination area or finite roughness patch (i.e. ζ(r) = 0 outside a given region). As

such, a finite limit is kept on the integral in order to capture this effect, while also avoiding any

divergence problems associated with the δ-function. The limit Ly →∞ can always be taken

where appropriate. Performing the integration results in

I(∆k‖,±∆k′‖) = 2πa2
Ly sinc

[
(∆ky ∓∆k′y)Ly/2

]
−i(∆kx ∓∆k′x)− 2k′′SPP

, (3.49)

where the sinc function is defined by sinc(x) = sin(x)/x. In this short surface correlation length

approximation, it can be explicitly seen that the integral in Eq. (3.46) does not vanish and the

non-circularity of the field is made explicit. To quantify the degree of non-circularity, a quantity

fC(r) can be defined as

fC(r) =
|〈Eζ,i(r)Eζ,j(r)〉|
〈Eζ,i(r)E∗ζ,j(r)〉

. (3.50)

This acts as a measure of the size of the pseudo-covariance of two components of the electric

field at a position r relative to the covariance of the same two components. If the field is

circular, fC = 0, while fC � 1 indicates that it is in some sense close to circular and could be
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approximated as such. Using Eqs. (3.49) and (3.49), fC takes the form

fC(r) =
|sinc(∆kyLy)|√

1 +
(

∆kx
k′′SPP

)2
. (3.51)

Notably, for ∆kx 6= 0, fC(r)→ 0 in the low loss limit kSPP → 0. In general, increased loss (i.e.

increased k′′SPP) increases fC and thus it can be concluded that absorption plays a role in the

non-circular statistics. For ∆kx = 0, even the lossless limit does not give a circular variable. The

second limiting case to further the understanding is to consider a general correlation function,

but in the lossless case, with the incident SPP illuminating a finite area of roughness A (assumed

to be a rectangular area of sides Lx and Ly) that is sufficiently large that all integrals over ρ1,2

are well approximated by being over an infinite area. In this case, Eq. (3.47) becomes a Fourier

transform and simplifies to

I(∆k‖,±∆k′‖) =

∫
d2ρ1d

2ρ2C(ρ1 − ρ2)e−i∆k‖·ρ1ei∆k
′
‖·ρ2

= C̃(∆k‖)(2π)2δL(∆k‖ ∓∆k′‖), (3.52)

where δL is a nascent delta function defined by (2π)2δL(q) = Lx sinc(qxLx/2)Ly sinc(qyLy/2),

which tends to a δ function as Lx,y →∞. From this, fC(r) in the lossless case is given by

fC(r) = |sinc(∆kxLx) sinc(∆kyLy)|. (3.53)

It can be seen that fC is maximised around ∆k‖ = 0, and decays over a scale ∼ 1/Lx,y

determined by the size of the illuminated rough area. Outside of this region, the speckle field is

approximately circular. Absorption acts to limit the illuminated area to a length scale LSPP,

and this is why absorption also gives non-circular statistics, with Eq. (3.51) decaying with

∆kxLSPP, though now as a Lorentzian as opposed to sinc type decay.
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Intensity Statistics

The intensity statistics can be derived from the moments above. The mean intensity 〈Iζ(r)〉 =

〈|Eζ(r)|2〉 =
∑

i〈|Eζ,i(r)|2〉 is simply

〈Iζ(r)〉 =|B|
∣∣G0(r,0−)A+

SPP

∣∣2I(∆k‖,∆k‖). (3.54)

The average intensity radiated to the far field can be seen to match that of a dipole at the

surface oriented along the SPP polarisation, modified by the surface correlation integral. This

already points to a significant feature of random SPP scattering. As discussed in Section 3.3.2

and shown in Fig. 3.4, the dipole intensity pattern is strongly confined to a narrow range of

angles near ΘSPP due to the leakage radiation condition. As a result, the randomly scattered

light, while still a speckle, is confined to this leakage radiation ring. The ring shaped speckle is

in fact evident in Eq. (3.38), with the Green’s tensor factor giving the ring like profile, and the

ζ dependent integral being a random function of r giving the random speckle behaviour.

To further characterise the intensity statistics at a point r, the variance defined by σ2
ζ (r) =

〈I2
ζ (r)〉 − 〈Iζ(r)〉2 can be calculated via calculating the second moment of the intensity as

〈I2
ζ (r)〉 =

3∑
i,j=1

〈Eζ,i(r)E∗ζ,i(r)Eζ,j(r)E∗ζ,j(r)〉

= 〈Iζ(r)〉2 +
3∑

i,j=1

|〈Eζ,i(r)Eζ,j(r)〉|2 +
∣∣〈Eζ,i(r)E∗ζ,j(r)〉

∣∣2, (3.55)

where Wick’s theorem has been used to split up the mean of the product of four fields into a

sum of pairwise partitions. Using Eqs. (3.43) and (3.44) evaluated at r′ = r, the variance is

found to be

σ2
ζ (r) =

3∑
i,j=1

∣∣〈Eζ,i(r)E∗ζ,j(r)〉
∣∣2 + |〈Eζ,i(r)Eζ,j(r)〉|2

= 〈Iζ(r)〉2
(
1 + |fC(r)|2

)
. (3.56)

The speckle contrast, here given by σζ/〈Iζ〉, deviates from the classic Rayleigh statistics value
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of unity owing to the non-circularity. When |fC(r)| � 1, unity contrast is observed as in fully

developed speckle. Another quantity that helps characterise the speckle pattern properties is

the intensity autocorrelation defined as Fζ(r, r
′) = 〈Iζ(r)Iζ(r

′)〉 − 〈Iζ(r)〉〈Iζ(r′)〉. Since this is

a fourth order (central) moment of the field, it can be calculated with the same approach as Eq.

(3.55) using

〈Iζ(r)Iζ(r
′)〉 =

3∑
i,j=1

〈Eζ,i(r)E∗ζ,i(r)Eζ,j(r
′)E∗ζ,j(r

′)〉

= 〈Iζ(r)〉〈Iζ(r′)〉+
3∑

i,j=1

|〈Eζ,i(r)Eζ,j(r
′)〉|2 +

∣∣〈Eζ,i(r)E∗ζ,j(r
′)〉
∣∣2, (3.57)

The autocorrelation is therefore given by

Fζ(r, r
′) = |B|2

∣∣G0(r,0−)A+
SPP

∣∣2∣∣G0(r′,0−)A+
SPP

∣∣2 [∣∣I(∆k‖,∆k
′
‖)
∣∣2 +

∣∣I(∆k‖,−∆k′‖)
∣∣2] .
(3.58)

The Green’s tensor factors arise from the different dipolar intensities radiated to points r

and r′, rather than any statistical properties. A normalised autocorrelation Fζ(r, r′) =

Fζ(r, r
′)/(〈Iζ(r)〉〈Iζ(r′)〉) eliminates this dependence on the mean intensity at each point

and can be expressed

Fζ(r, r′) =

∣∣∣I(∆k‖,∆k
′
‖)
∣∣∣2 +

∣∣∣I(∆k‖,−∆k′‖)
∣∣∣2

I(∆k‖,∆k‖)2
. (3.59)

In the lossless case, using Eqs. (3.52) yields

Fζ(r, r′) = sinc2

(
(∆kx −∆k′x)Lx

2

)
sinc2

(
(∆ky −∆k′y)Ly

2

)
+ sinc2

(
(∆kx + ∆k′x)Lx

2

)
sinc2

(
(∆ky + ∆k′y)Ly

2

)
. (3.60)

Similarly, the lossy short surface correlation length case (Eqs. (3.49) and (3.49)) gives

Fζ(r, r′) =
sinc2

[
(∆ky −∆k′y)Ly/2

]
1 + (∆kx −∆k′x)

2L2
SPP

+
sinc2

[
(∆ky + ∆k′y)Ly/2

]
1 + (∆kx + ∆k′x)

2L2
SPP

(3.61)
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As noted in studying the non-circularity function fC , the effect of absorption is similar to that

of having a system of finite length LSPP, in that in both cases the autocorrelation decays with

the outgoing wavevector difference on the scale 1/Lx,y (with the Lx = LSPP in presence of

absorption) though again absorption gives a Lorentzian as opposed to sinc decay. The peak in

Eqs. (3.60) and (3.61) at ∆k‖ = ∆k′‖ is unsurprising as this corresponds to the correlation of

light scattered in the same direction, which are by definition statistically correlated (in the far

field). The secondary peak at ∆k‖ = −∆k′‖ has a slightly more detailed explanation. From Eq.

(3.38), one can see that, since ζ is real, Eζ at the observation point corresponding to −∆k‖ is

related to Eζ at ∆k‖ via the Hermitian symmetry of the Fourier transform integral. Specifically,

they are related via

Eζ(−∆k‖) = MGE
∗
ζ (∆k‖), (3.62)

where the argument of Eζ has been set to k‖ for clarity here, noting that r fully determines k‖,

and the matrix MG is required to relate the different phase, amplitude and polarisation of the

Green’s tensor factors, defined such that

(εm − εd)
ω2

c2
G0(r′,0−)A+

SPP = MG(ε∗m − εd)
ω2

c2
G∗0(r,0−)A+∗

SPP. (3.63)

Crucially, MG is entirely determined by deterministic functions that do not depend on the

random surface roughness ζ. As such, Eζ(−∆k‖) and Eζ(∆k‖) are mutually dependent and

thus the correlation between these two points is maximised.

The length scale over which Fζ decays is a measure of a speckle size: points closer than this

length are correlated as they lie within the same speckle, while points separated by more than

this are uncorrelated (or have a much weaker correlation) since they are not in the same speckle

[259]. From Eqs. (3.60) and (3.61), the speckle size is inversely proportional to the size of the

illuminated area, a property widely observed in speckle patterns [21]. Taking r and r′ in the

leakage ring, ∆ky = k′SPP sinφ, ∆kx = k′SPP(cosφ− 1) and similar for primed coordinate, the
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leakage radiation ring autocorrelation is found to be, in the lossless and lossy cases respectively

Fζ(r, r′) = sinc2

(
(cosφ− cosφ′)k′SPPLx

2

)
sinc2

(
(sinφ− sinφ′)k′SPPLy

2

)
+ sinc2

(
(cosφ+ cosφ′ + 2)k′SPPLx

2

)
sinc2

(
(sinφ+ sinφ′)k′SPPLy

2

)
(3.64)

FLRζ (φ, φ′) =
sinc2 [(sinφ− sinφ′)k′SPPLy/2]

1 + (cosφ− cosφ′)2k′2SPPL
2
SPP

+
sinc2 [(sinφ+ sinφ′)k′SPPLy/2]

1 + (cosφ+ cosφ′ − 2)2k′2SPPL
2
SPP

. (3.65)

Within the leakage ring, there are no two points with ∆k′‖ = −∆k‖, as it would require

cosφ = cosφ′ and sinφ = sinφ′ simultaneously. Assuming that Lx,y � λSPP and LSPP � λSPP,

this means the second term becomes negligible and one has

Fζ(r, r′) ≈ sinc2

(
(cosφ− cosφ′)k′SPPLx

2

)
sinc2

(
(sinφ− sinφ′)k′SPPLy

2

)
(3.66)

FLRζ (φ, φ′) ≈ sinc2 [(sinφ− sinφ′)k′SPPLy/2]

1 + (cosφ− cosφ′)2k′2SPPL
2
SPP

, (3.67)

indicating an angular speckle size ∼ (k′SPP max(Lx, Ly))
−1.

Unsurprisingly, the light scattered from the random rough surface has many properties

similar to that of fully developed speckle, but there are a few notable differences. The non-

circularity of the field and the fact the contrast is not unity are examples of this, but the fact

that the mean intensity varies in space according to a dipolar intensity profile is perhaps the

most significant. As discussed in Section 3.3.2, these can exhibit strong directional dependence

in systems supporting SPPs. This position dependence of the mean intensity shows that the

speckle pattern is not statistically homogeneous, and therefore spatial averaging is not equivalent

to averaging over realisations of surface roughness. As a result, in this context, care must be

taken when taking averages of speckle patterns that it is clear what is being averaged over,

and that an experimentally measured spatially averaged quantity obtained from the speckle

pattern scattered from a given fixed rough surface differs from the same quantity averaged over

realisations of the rough surface, which would require measurements over multiple different

surfaces to calculate experimentally. In order to make the distinction clear, quantities spatially

averaged over some region A shall be denoted with an overbar, e.g. F =
∫
A Fdr/A, while the
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angled brackets will continue to denote averaging over realisations of the scattering configuration.

The statistics of the background speckle arising from scattering from a rough surface have been

characterised, and so the light scattered from the analyte particle must now be considered.

3.4.2 Scattering from an Analyte Particle

The first thing to note is that, working in the single scattering regime, the field scattered from

the analyte particle, Ea(r), is independent of Eζ(r). The total scattered field can therefore be

found by simply adding the two scattered fields. A general analyte particle can be modelled by a

potentially position dependent dielectric function εa(r) occupying a volume Va in the dielectric

halfspace z > 0. The scattered field for this scattering configuration can be expressed in the

single scattering Born approximation as

Ea(r) =
ω2

c2

∫
r′∈Va

d3r′G0(r, r′) (εa(r
′)− εd)E0(r′). (3.68)

While this form allows for a completely general size, shape and composition of the analyte

particle, it does not allow for much general analysis. To simplify the expression, it is assumed

that the analyte particle volume is small such that G0(r, r′) and E0(r′) do not vary significantly

over Va. As a result, these can be approximated as constant within the integral and replaced

with their values at a point ra in Va, yielding

Ea(r) ≈ k2
0G0(r, ra)

[∫
r′∈Va

d3r(εa(r
′)− εd)

]
E0(ra). (3.69)

It is important to consider exactly what constitutes a ‘small’ analyte particle volume. The

condition for E0 to not vary significantly over Va can be seen from Eq. (3.5). The SPP field

varies on the length scales λSPP and Ld in the x and z directions respectively. In order for

the field to not vary significantly over Va regardless of orientation of the analyte particle, the

longest length of the analyte particle must be smaller than min(λSPP, Ld). This restricts the

approximation to particles smaller than ∼ 100nm at optical wavelengths. For example, the

glass-gold-water thin film structure at 650nm gives Ld = 102nm and λSPP = 454nm. The
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condition to treat G0 as constant is less straightforward. Firstly, the condition depends on the

observation position r, since the Green’s tensor varies with both r′ and r. For example, in the

very near field where |r − r′| < λ0, the Green’s tensor varies much quicker as it approaches

the singularity at r = r′. When r is in the far field, however, the condition is quite simple,

since, from Eq. (3.30), G0(r, r′) varies with r′ on the length scale λd = λ0/ε
1/2
d . Therefore, the

analyte particle’s longest length scale must be smaller than this. This condition is generally

less restrictive than that arising from the field variation as λd > Ld and λd > λSPP, so that

provided the analyte particle is smaller than Ld, the approximations made in deriving Eq. (3.69)

are valid. Recalling the relation between the Green’s tensor and the field radiated by a dipole

moment p, it is informative to express Eq. (3.69) as

Ea(r) =
k2

0

ε0

G0(r, ra)αaE0(ra). (3.70)

where αa is a constant determined by εa(r) and the shape of the analyte particle. Thus, the

analyte particle, provided it is sufficiently small, radiates a dipole field with dipole moment

p = αaE0(ra). Physically, αa can be seen to correspond to the polarisability of the analyte

particle. Based on the Born approximation, one finds αa = ε0

∫
Va d

3r′(εa(r
′) − εd), however,

more accurate models, accounting for depolarisation effects and the fact the internal field in the

analyte particle differs from E0, such as the renormalised Born approximation, give different

expressions for αa [142, 260, 261]. Rather than attempting to calculate αa from integrating εa(r)

over the volume, αa will be treated as a parameter of the analyte particle. Standard results

exist for calculating the polarisability of an object such as the quasi-static polarisability (Eq.

(2.6)) or from Mie theory [262]. The Mie theory polarisability is given by [88, 263]

αMie = i
6π

k3
d

a1ε0εd, (3.71)

where kd = ε
1/2
d k0 is the wavenumber of light in the dielectric and a1 is the electric dipole Mie

coefficient, which can be calculated from the analyte particle radius Ra and permittivity εa from

standard Mie theory [221, 264]. Strictly speaking, this result (and Eq. (2.6)) only applies for a

sphere in a homogeneous space and not one near interfaces. Provided the sphere is sufficiently
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small, however, the effect of the interaction between the analyte particle and the interface on

the polarisability (known as surface dressing) can be ignored. This effect will be discussed in

greater detail in Chapter 5.

The same result as Eq. (3.70) could be arrived upon within a point scatterer model [265] in

which the dielectric function associated with the analyte particle is εa(r) = (αa/ε0)δ(r − ra).

This point scatterer model will be useful in future chapters. In general, αa is a complex tensor

quantity reflecting the fact the analyte particle may have an anisotropic response and that the

dipole moment need not be in phase with the incident field. The intensity scattered directly

from the analyte particle is Ia(r) = |Ea(r)|2. In the case of an isotropic scatterer for which αa

is a scalar, this can be expressed

Ia(r) =
k4

0

ε2
0

|αa|2
∣∣G0(r, ra)A

+
SPP

∣∣2e−xa/LSPPe−za/Ld . (3.72)

Comparing Eqs. (3.54) and (3.72) the similarities allow an effective surface polarisability to be

defined. Firstly, consider the short surface correlation length lossy case in which Eq. (3.49)

applies. In this case, Eq. (3.54) reduces to

〈Iζ(r)〉 = 2π|εm − εd|2a2h2LyLSPPk
4
0

∣∣G0(r,0−)A+
SPP

∣∣2. (3.73)

From this, the effective surface polarisabilty is defined as α2
surf = 2πε2

0|εm − εd|
2a2h2LyLSPP.

The scaling of this term can be explained heuristically by considering surface scattering as

arising from scattering from many individual surface roughness features (i.e. peaks and troughs)

on the surface. Each scattering feature has a volume ∼ ha2 (see Fig. 3.5). Since each feature

is small, it can be treated as a dipole scatterer with polarisability ∼ ∆εha2 proportional to

the volume of the feature times the difference in dielectric from the background. These many

dipoles add up incoherently due to the random phase differences so that the total intensity is

proportional to the number of such roughness features Nfeat scattering light multiplied by the

average intensity scattered from a feature ∼ |G0∆εha2E0|2. The number of scattering features

is Nfeat ∼ total area illuminated/average area of feature = LyLSPP/a
2. Thus the scattered light

is proportional to Iζ ∼ Nfeat|G0∆εh2aE0|2 = LyLSPPa
2h2∆ε|G0E0|2, matching the scaling of
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Figure 3.5: Diagram showing heuristic argument for scaling of αsurf. On the left, a single surface
feature is shown occupying a small volume ∼ ha2 and thus has a polarisability ∼ (εm − εd)ha2. In the
right diagram, it can be seen that the entire illuminated region of area ∼ LyLSPP contains ∼ LyLSPP/a

2

such scattering volumes.

Eq. (3.73). The value of this effective polarisability is that the mean intensity scattered to a

point r in the far field by the rough surface is equivalent to that of a single point scatterer of

polarisability αsurf located at 0− oriented in the direction of A+
SPP. While the different positions

of the dipole source mean the dipolar intensity patterns of Eqs. (3.72) and (3.73) differ, the

effective polarisability can be compared to αa to give an idea of the comparative strength

with which the surface and analyte particle scatter light. Fig. 3.6 shows the relative size of

the surface and analyte particle polarisabilities where the analyte particle has been modelled

as a homogeneous sphere and the Mie polarisability expression (Eq. (3.71)) has been used.

Unless otherwise stated, the surface roughness parameters used in this chapter from now on

are Ly = 10λ0, h = 6nm and a = 12nm. It can be seen that the effective surface polarisability

is ∼ 103 times larger than that of a 50nm sphere of refractive index 1.4 (chosen as typical of

biological objects such as viruses or proteins [266, 267, 268]). The typical surface scattered

intensities are therefore expected to be ∼ 106 larger than the light scattered from a 50nm analyte

particle even for surface roughness with parameters typical of a metal film, with the surface still

scattering an order of magnitude more strongly even as the analyte particle radius approaches

λ0, though for radii as large as this, the point dipole approximation breaks down and higher

order multipoles contribute to scattering. Here it can also be seen why a dark field version of

the proposed sensing set up, in which there is no background scattered light, is significantly
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Figure 3.6: Plots showing the dependence of |αa/αsurf| on the size of the analyte particle (left) and the
RMS roughness height (right) for the glass-gold-water structure at λ0 = 650nm. The analyte particle is
modelled as a homogeneous sphere of radius Ra and constant permittivity εa, with αa calculated from
Eq. (3.71). The three analyte particle compositions plotted are gold (εa = −13.7 + 1.04i), polystyrene
(εa = 2.5) and a ‘biological’ particle (εa = 1.96). On the left plot, αsurf was held fixed for parameters
h = 6nm, a = 12nm Ly = 10λ0 = 6.5µm while on the right αa was that of a ‘biological’ particle with
the given radius.

more challenging, requiring RMS surface roughness deviations of the order ∼ 0.1nm or less

simply to get the surface scattered light down to a comparable level to the light scattered from

an analyte particle of radius 51nm. In the gold case, at large radius Ra & 100nm, dips in αa

as a function of Ra are seen, which arise due to a known oscillatory dependence of the Mie

coefficient on Ra when |(na/nd)kdRa| � 1 [269]. For a gold sphere analyte particle, the analyte

particle refractive index na has a significantly larger modulus than nd, and thus this oscillatory

behaviour is seen in Fig. 3.6. For the other two analyte particle compositions plotted, the

refractive index contrast with the background is sufficiently small to ensure |(na/nd)kdRa| . 1

and thus the dips are not observed.

The effective polarisability was derived under the assumption of a short surface correlation

length, but when this does not hold, the mean scattered intensity is no longer purely dipolar as

it is modified by I(∆k‖,∆k‖). Using the lossless result from Eq. (3.52) results in Eq. (3.54)

becoming

〈Iζ(r)〉 = |εm − εd|2a2h2LyLxk
4
0

∣∣G0(r,0−)A+
SPP

∣∣2C̃(∆k‖). (3.74)

The short surface correlation length δ-function approximation is equivalent to taking C̃(∆k‖) =

C̃(0) to be constant. Using a Gaussian correlation function allows assessment of when that
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Figure 3.7: (left) The profile of 〈Iζ(θ = ΘSPP, φ)〉 around the leakage ring for a Gaussian surface
correlation function with different values of a, calculated from Eq. (3.75) and normalised to a maximum
value of 1 and (right) the value of C̃(∆k‖)/C̃(0) around the leakage ring for the same set of correlation
lengths.

approximation breaks down. Recalling that the normalisation is such that C(0) = 1, the Fourier

space correlation function becomes C(q) = 2πa2 exp(−q2a2/2). It follows that the mean surface

scattered intensity is

〈Iζ(r)〉 =
k4

0

ε2
0

α2
surf

∣∣G0(r,0−)A+
SPP

∣∣2 exp
(
−∆k2

‖a
2/2
)
. (3.75)

Note that the effective surface polarisability still appears, though now with LSPP replaced by Lx,

and therefore still provides a heuristic tool to compare the scattering strength of the surface to

that of a small particle. The result is modified from Eq. (3.73) by a function C(∆k‖) ≤ 1. For

observation points in the leakage ring, ∆k‖ = k′SPP(cosφ− 1, sinφ)T . Thus the short surface

correlation length result is modified by a factor exp{−k′2SPPa
2(1− cosφ)}. The smallest value

this can take is in the backscattered direction when φ = π, which is exp(−2k′2SPPa
2). In order

for this correction to be significant, it is required that k′2SPPa
2 & 1. Taking a = 10nm and

λSPP = 454nm for the glass-50nm gold-water thin film structure at λ0 = 650nm one finds that

the correction value is 0.96 at smallest. Fig. 3.7 shows the modified mean intensity around the

ring for a few different surface correlation lengths. For a . 20nm, the short range correlation
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approximation a → 0 is fairly accurate. Long correlation lengths cause the scattering to be

strongly in the forward direction. This is because long surface correlation lengths correspond

to smoother surfaces, and therefore the roughness deflects the scattered light through much

smaller angles compared to steeper gradient surfaces.

3.5 Single Scattering Sensitivity Analysis

With a model established describing all single scattering processes involved in the sensing setup,

a single scattering sensitivity analysis can now be performed. Recalling from Chapter 2 that

sensitivity is defined as the derivative of the measured signal with respect to the quantity of

interest, an appropriate definition here, in the context of sensing a single particle, is the change

in the measured signal on addition of the analyte particle. Different sensing signals define

different sensitivities, and a few possible signals will be studied here.

3.5.1 Field Sensitivity

Taking the electric field as a measured signal, the field sensitivity can be defined as

SE = |∆E| = E −Eζ . (3.76)

Direct measurement of the electric field at optical frequencies is challenging and rarely done

in practical experimental setups [270], thus it is unlikely that the electric field would actually

act as a sensing signal. It is still useful to define and study SE, primarily because any actual

measured signal (for example intensity) ultimately derives from a change in the electric field,

and therefore sensitivities of other metrics can be related to SE. In the single scattering regime,

the change to the field is simply the additional field scattered from the analyte particle so that

SE(r) = |Ea(r)|

=

∣∣∣∣k2
0

ε0

G0(r, ra)αaE0(ra)

∣∣∣∣
=
k2

0

ε0

∣∣G0(r, ra)αaA
+
SPP

∣∣e− xa
2LSPP e−

za
2La . (3.77)
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Since SE ∝ |E0(ra)|, the sensitivity decays exponentially with the analyte particle’s distance

away from the surface za and with distance along the propagation direction xa, while also being

proportional to the field strength at the surface |A+
SPP| . This is determined by the illumination

power, and clearly one can increase this power to improve sensitivity. Ultimately, however,

practical considerations such as the damage to the sample limit how much power one can put

into the system. Due to this proportionality, the sensitivity will be measured relative to the

incident field directly above the surface z = 0+. Dependence on ra also appears in the Green’s

tensor. In the far field, Eq. (3.30) reveals that the transverse position ρa only changes the

phase of G∞0 and this does not affect SE. Thus, the only transverse dependence arises from

the incident field decay. On the other hand, from Eqs. (3.24)–(3.26), G∞0 (r, ra) has a different

variation with za depending on the observation position. For r in the lower half space (and in

the far field), only the transmission component G̃tr contributes to G∞0 (r, ra), which exhibits

an exp(ikzza) dependence on za. For observation points with ko‖ < kd, za only changes the

Green’s tensor phase. On the other hand, observation points with ko‖ > kd, possible in the

z < −d halfspace provided εN > εd, result in an exponential decay of G∞0 as kz = iκz where

κz = (k2
o‖ − k2

d)
1/2 is real. This introduces an additional decay exp{−κzz′} to SE. Such a decay

arises due to the fact the light at these angles arises from coupling of evanescent components of

the radiated field through the multilayer structure into propagating components in the lower

half space, and as such the coupling decays evanescently as the dipole is moved further from the

surface. Importantly, this range of angles includes the leakage radiation ring in structures with

SPP modes. Overall, the dependence on ra = (xa, ya, za)
T can be summarised for observation

points below the multilayer stack via

SE(r) =
k2

0

ε0

∣∣G∞0 (r,0+)αaA
+
SPP

∣∣e− xa
2LSPP e−

za
2La ×


1 θ > θc

exp(−κzza) π
2
< θ ≤ θc.

(3.78)

where θc = π − sin−1(nd/nN) is the critical angle at which the modes coupling from the dipole

through the multilayer stack to the far field in direction θ switch from evanescent to propagating

modes. For observation positions in the upper half plane, the z dependence is more complicated
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Figure 3.8: Plots showing (left) max(SE)/
∣∣A+

SPP

∣∣ and SE/
∣∣A+

SPP

∣∣ as a function of za with Ra = 50nm
and r = 100λ0 fixed and a ‘biological’ analyte and (right) the polar angle θmax at which max(SE)
occurs, with the leakage angle ΘSPP shown (red dashed line).

due to the fact both Gdir and Gref contribute and have different za dependence. As such, the

exact za dependence of SE depends on the interference between the direct and reflected Green’s

tensor, which is decided by the Fresnel coefficient. This means the za dependence of SE in the

upper half space is strongly dependent on the parameters of the multilayer stack, but will in

general oscillate as the analyte particle moves away from the surface. The length scale of the

variation of |Gdir +Gref| with za will be ∼ 1/kz = 1/(kd cos θ). When kz < κd, the exp(−κdza)

decay of the incident field will dominate over the za dependence arising from the Green’s tensor.

Finally, due to the r−1 dependence of G∞0 (see Eq. (3.30)) SE ∝ r−1, where r is the distance of

the observation point from the origin. The maximum field sensitivity for isotropic scatterers is

generally achieved in the leakage radiation ring due to the directionality of the dipole radiation,

but this comes at the cost of a more rapid decay of sensitivity with the distance of the particle

from the surface. In fact, the decay in the leakage ring is approximately doubled compared to

outside the critical region, since Eq. (3.2) gives κd = (k2
SPP − k2

d)
1/2 which for k′′SPP � k′SPP is

approximately the same decay as κz = (k′2SPP−k2
d)

1/2. Fig. 3.8 shows the dependence of max(SE)

on za for the case study structure at λ0 = 650nm for a 50nm radius spherical ‘biological’ analyte

particle at a radial coordinate r = 100λ0 (SE at any other distance r in the far field can be

calculated from the results in Fig. 3.8 via the ∝ r−1 scaling), as well as the observation polar

angle at which the maximum occurred. The leakage ring provides maximum sensitivity until

the analyte moves sufficiently far from the surface. Once above a certain height (zp = 2.8Ld in

87



CHAPTER 3. SENSITIVITY ANALYSIS

this case), the evanescent coupling to SPPs and into the leakage ring is sufficiently weak that

the maximum sensitivity arises from light diffusely scattered into the water, and the sensitivity

decay with height is proportional to the field decay ∝ exp(−za/2Ld). Since the incident field

intensity has decayed to a fraction e−2.8 ≈ 0.06 of its value at the metal surface, it is reasonable

to consider this outside the sensing volume. As a result, it can be concluded that the electric

field is the most sensitive at a point in the leakage ring whenever sensing can occur. The

sensitivity here is a pointwise metric, in that each point r a measurement is taken has a defined

sensitivity . In general, no sensing setup would involve the measurement at a single point as

this would be susceptible to noise, and so it is also useful to consider average sensitivities SΩ

E

over a particular d-dimensional region Ω.

SΩ

E =

∫
Ω

ddr

|Ω|
SE(r), (3.79)

where |Ω| is the d-dimensional volume of Ω. Additionally, actual light detectors will be of finite

size and therefore any measurement will be averaged over the detector size. Generally, light is

measured on a 2D surface, so Ω will most commonly be taken as an area. Fig. 3.8 shows these

spatially averaged quantities for a few different choices of Ω, these being the surface of a sphere

in the far field averaging over propagating light in all directions (Sall
), a hemisphere in the

far field collecting all light propagating in the far field in either the upper (S+
) or lower (S−)

halfspace and finally averaging around the leakage ring (SLR). Explicitly, these are defined by

Sall

E =
1

4πr2

∫ π

θ=0

∫ 2π

φ=0

SE(r)r2 sin θdθdφ (3.80)

S+

E =
1

2πr2

∫ π
2

θ=0

∫ 2π

φ=0

SE(r)r2 sin θdθdφ (3.81)

S−E =
1

2πr2

∫ π

θ=π
2

∫ 2π

φ=0

SE(r)r2 sin θdθdφ (3.82)

SLRE =
1

2πr2 [cos( ΘSPP − δ
2

)− cos( ΘSPP + δ
2

)]

∫ ΘSPP+ δ
2

ΘSPP− δ2

∫ 2π

φ=0

SE(r)r2 sin θdθdφ (3.83)

where δ is the FWHM of the leakage ring. These averaged sensitivities maintain the same r−1

as the pointwise SE(r) as they are all over regions with fixed r. Unsurprisingly, the metal film
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reflects most of the light into the upper half space so that S+
E > S−E . For an analyte particle

very near the surface, with strong evanescent coupling, S+
E and S−E are much closer together,

with the leakage ring being much more sensitive than the rest of the lower half space. While

the pointwise sensitivity is largest in the leakage ring, when averaged around the whole ring it

is actually comparable to and slightly less than the average sensitivity over the whole upper

half space. This is because the dipolar profile around the ring means the field sensitivity in

the backward directions is much smaller than the forward directions and hence the average

sensitivity around the ring is much smaller than max(SE). The balance between high sensitivity

and the size of the area with large sensitivity (i.e. the number of highly sensitive points) is

important to consider, especially in the context of the practical experimentally measurable

signals.

As it is not being considered as a likely sensing signal, there is no need to study the other

common sensing metrics such as LOD introduced in Chapter 2. Instead, these should be

considered in the context of signals that can be realistically measured in a biosensing setup.

3.5.2 Intensity Sensitivity

A more practical measurement signal is the intensity of the light, which can be measured with

simple photodetectors or cameras. In this case, the pointwise sensitivity metric is defined by

SI(r) = |∆I(r)| = I(r)− Ib(r), (3.84)

where I(r) = |E0(r) +Eζ(r) +Ea(r)|2 is the intensity when the analyte particle is in the

sensing volume (i.e. close to the surface) and Ib(r) = |E0(r) +Eζ(r)|2 is the intensity in the

absence of the analyte particle. The intensity perturbation is given by

∆I(r) = Ia(r) + 2 Re [E∗b (r) ·Ea(r)]

= S2
E(r) + 2SE(r)

√
Ib(r)

∣∣∣ξ̂∗b (r) · ξ̂a(r)
∣∣∣ cos [Φ(r)] . (3.85)
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The initial speckle field Eb = E0 +Eζ has been defined, while ξ̂a,b(r) = Ea,b(r)/|Ea,b(r)| are

the unit polarisation vectors for the analyte scattered and initial speckle field and Φ(r) is the

phase difference between Ea and Eb. Noting that 〈Re(E∗ζ ·Ea)〉 = 0, the mean intensity change

is just the intensity scattered from the analyte plus the interference with the incident field

〈∆I(r)〉 = Ia(r) + 2 Re [E∗0(r) ·Ea(r)] . (3.86)

The reason the interference term 2 Re[E∗ζ · Ea] vanishes is because the random phase of the

speckle field means it is equally likely Ea will increase the intensity (adding in phase with Eζ)

or decrease the intensity (adding out of phase), and these effects cancel out when averaging over

realisations. From a sensing perspective, however, a decrease in intensity is providing the same

information about the presence of the analyte as an intensity increase, and it is the magnitude

of the change that is of interest. One way to measure this is to calculate the root mean square

(RMS) sensitivity, defined as SRMS
I = 〈∆I2〉1/2. The advantage this has over 〈SI〉 is that it can

be calculated analytically from the statistical model of the surface. Wick’s theorem means the

odd order terms in Eζ vanish and 〈∆I2〉 = 〈∆I〉2 + 〈[2 Re(Eζ ·E∗α)]2〉, with the average of the

squared interference term given by Wick’s theorem to be

〈[2 Re(Eζ(r) ·E∗a(r))]2〉 =2
3∑

i,j=1

{
Re

[
〈Eζ,i(r)Eζ,j(r)〉E∗a,i(r)E∗a,j(r)

]

+ 〈Eζ,i(r)E∗ζ,j(r)〉E∗a,i(r)Ea,j(r)

}
. (3.87)

The second term on the right hand side of Eq. (3.87), using Eqs. (3.45) and (3.70), can be

expressed

3∑
i,j=1

〈Eζ,i(r)E∗ζ,j(r)〉E∗a,i(r)Ea,j(r)

=
k4

0

ε2
0

|B|
∣∣[G0(r, 0−)A+

SPP

] [
G0(r, ra)αaA

+
SPP

]∣∣2e−xa/LSPPe−za/LaI(∆k‖,∆k‖) (3.88)

=
∣∣∣Esurf,eff

dp (r) ·Ea(r)
∣∣∣2.
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This corresponds to the magnitude squared of the dot product of the effective dipole field from

the surface scattering, Esurf,eff
dp (r) = (k2

0/ε0)G0(r,0−)αsurfA
+
SPP, with the dipole field scattered

from the particle. Similarly, the first term of Eq. (3.87), using Eq. (3.46), becomes

3∑
i,j=1

Re
[
〈Eζ,i(r)Eζ,j(r)〉E∗a,i(r)E∗a,j(r)

]
=
k4

0

ε2
0

Re
{
B
[(
G0(r,0−)A+

SPP

) (
G0(r, ra)αaA

+
SPP

)∗
eikSPPxpe−κdzp

]2 I(∆k‖,−∆k‖)
}
. (3.89)

Both terms are proportional to |αsurfαa|2, whereas Ia ∝ |αa|4 is much smaller. As discussed earlier

(e.g. see Fig. 3.6), αa � αsurf for typical biological particle and surface roughness parameters

and therefore the mean interference term dominates over Ia. Furthermore, since the incident

SPP field E0 is decays with distance from either surface (see Eq. (3.5)), it vanishes in the far

field and can be ignored in the calculation of SRMS
I . As a result, 〈∆I〉 = Ia � 〈[2 Re(Eζ ·E∗α)]2〉.

In addition, in the leakage ring |fC | � 1 so that the first term in Eq. (3.87) is much smaller

than the second and can be ignored. Within these approximations, SRMS
I becomes

SRMS
I ≈

√
2
k4

0

ε2
0

∣∣αsurf

[
G0(r, 0−)A+

SPP

] [
G0(r, ra)αaA

+
SPP

]∣∣e− xa
2LSPP e−

za
2La

=
√

2
∣∣∣Esurf,eff

dp (r) ·Ea(r)
∣∣∣. (3.90)

Unlike SE, which only depends on the analyte particle, the statistics of the surface scattered

light are important in SRMS
I . As one would expect from an interference effect, SRMS

I ∝ 〈Iζ〉1/2,

meaning that increasing the scattering from the surface increases the sensitivity. Much like the

field sensitivity, SRMS
I ∝ I0 where I0 =

∣∣A+
SPP

∣∣2 is the intensity at the metal surface. As before,

a sensitivity normalised to this intensity SRMS
I /I0 can be considered. It is also useful to consider

the sensitivity in terms of the fractional change to the intensity, i.e. the mean size of the intensity

change relative to the mean intensity before the analyte particle binds S frac
I = SRMS

I /〈Iζ(r)〉.

Fig. 3.9 shows the max(SRMS
I ) and spatially averaged RMS sensitivity over the leakage ring

SRMS,LR

I defined analogously to Eq. (3.83). The maximum occurs in the leakage ring in all

cases. The fractional intensity change in the leakage ring is on average of the order of 10−4 in

the leakage ring for a 10nm radius ‘biological’ analyte particle. This level of fractional intensity
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Figure 3.9: The RMS intensity sensitivity, SRMS
I , relative to (left) the intensity at the metal surface

I0 (at r = 100λ0) and (right) the mean background intensity 〈Iζ〉 (independent of r).

change is comparable to those involved in detection of single proteins using iSCAT [271]. Note

that the both Ia and Iζ scale as r−2 in the far field, so while SRMS
I ∝ r−2 (as indeed is SI), this

cancels out in SRMS
I /〈Iζ〉 so that the fractional sensitivity is independent of distance in the far

field. In fact, more generally, since Ea and Eb propagate together to a detector, the any form of

intensity attenuation, in addition to the r−2 decay from the Green’s tensor owing to the energy

being spread over a wider surface, for example due to optical elements in the detection setup,

apply equally to both the surface and analyte particle scattered contributions and therefore the

fractional sensitivity results of Fig. 3.9 still hold. On the other hand, SI/I0 ∝ r−2 does depend

on r and is shown for r = 100λ0 as in Fig. 3.8, with the r−2 scaling giving the value for any

other r from the results in Fig. 3.9.

3.6 Detection Limits

The limit of detection is defined in Eq. (2.2). For intensity measurements, the limit of detection

is when the intensity change ∆I is equal to the noise standard deviation (multiplied by some

constant m of order unity that depends on the confidence interval one requires to classify a

measurement as a binding event as opposed to noise). Using the shot noise model as in Chapter
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2, the standard deviation in the background intensity is

σI =
√
IζI1γ (3.91)

where I1γ is a parameter of the photon detector (corresponding to the intensity measured when

a single photon is incident on the detector in integration time τ). It is given by

I1γ =
γ~ω
Adetτ

(3.92)

where ~ is the reduced Planck’s constant, Adet is the detector area and γ is the detector quantum

efficiency giving the fraction of photons incident on the detector that are converted into a count.

The intensity on a detector is related to the number of photons incident in one integration time,

Nphot via I = I1γNphot. Using Eq. (3.91), the limit of detection for intensity is

LODI = m
√
IζI1γ. (3.93)

To detect a particle, it is required SI ≥ LODI , which yields equality when

∣∣∣∣ILOD
a + 2ξ̂∗b · ξ̂a

√
ILOD
a Iζ cos Φ

∣∣∣∣ =
√
IζI1γ, (3.94)

where ILOD
a is the minimum detectable analyte particle intensity. When Iζ � ILOD

a , this reduces

to

ILOD
a =

m2I1γ

2|ξ̂∗b · ξ̂a| |cos Φ|
. (3.95)

It can be seen that the closer the polarisation of the analyte scattered field is to the background

field (i.e. larger |ξ̂∗b · ξ̂a| ), the lower the LOD, as the interference term is larger. This reveals

another advantage of the leakage ring, in which the scattered light is predominantly p-polarised

and therefore the analyte and surface scattered fields are (approximately) co-polarised. Fur-

thermore, the limit of detection on particle scattered intensity (and therefore also on particle

polarisability/size) is independent of the background intensity (provided it is significantly larger
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than the analyte scattered intensity). This intensity LOD should be contrasted with a dark

field type measurement, where one attempts to detect the direct scattered term. Given it has

been established that, for metal surfaces, even surface roughness of RMS height . 1nm scatters

comparably to biological particles, such a setup is not realistic for the proposed system without

very high quality smooth metal surfaces. Considering a dark noise level (i.e. in the absence of

any analyte particle near the surface) of σd, assuming this is sufficiently larger than the shot

noise level in Ia that it can be neglected (i.e. σd � (IaI1γ)
1/2). This can arise from numerous

sources, including detector dark noise, temperature variations or surface scattering. The dark

noise analyte intensity limit, ILOD,dark
a , is given by

ILOD,dark
a = mσd. (3.96)

From this, it can be seen ILOD
a < ILOD,dark

a (i.e. the proposed setup has a lower detection limit

than a dark field TIR microscopy measurement) when σd > mI1γ/(2
∣∣∣ξ̂∗b · ξ̂a∣∣∣|cos Φ|). Assuming

the analyte and speckle field are co-polarised (in the leakage radiation ring, both will be

predominantly p-polarised) so that |ξ̂∗b · ξ̂a| = 1 and replacing |cos Φ| by its mean value over

uniformly distributed phase from 0 to 2π, 〈|cos Φ|〉 = 2/π gives an approximate condition

σd > (mπ/4)I1γ. Given m is of order unity, the proposed method has reduced detection limits

compared to a dark field approach if σd is larger than the intensity signal measured from ∼ 1

photon per integration time (assuming it is also larger than the intensity scattered from the

analyte particle). This finding is analogous to the results presented in Table 2.2, except in the

context of LOD as opposed to SNR.

The minimum detectable size of analyte as determined by shot noise depends only on I1γ , i.e.

the detector properties, and the power incident on the particle. Specifically, using ILOD
a = |SE|2,

the limit of detection on polarisability αLOD
a is found by putting Ia = |SE|2 = ILOD

a . Substituting

from Eqs. (3.77) and (3.95) yields

∣∣αLOD
a

∣∣ =
m
√
I1γ

k20
ε0

∣∣∣G∞0 Â+
SPP

∣∣∣√2I0

∣∣∣ξ̂∗b · ξ̂a cos Φ
∣∣∣ . (3.97)
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In order to estimate the minimum detectable size of analyte particle, Eq. (2.6) is used with

α = αLOD
a and Ra = RLOD

a , which results in

RLOD
a =

 m

k2
0|Q(εa, εd)|

∣∣∣G∞0 Â+
SPP

∣∣∣
 1

3
 I1γ

2I0

∣∣∣ξ̂∗b · ξ̂a cos Φ
∣∣∣
 1

6

(3.98)

where Q is a function of the material parameters

Q(εa, εd) = 4πεd

(
εa − εd
εa + 2εd

)
(3.99)

Importantly, RLOD
a ∝ I

1/6
0 so that increasing the intensity at the surface (i.e. power coupled into

the SPP mode) monotonically decreases the minimum detectable particle size, which is therefore

only limited by the amount of power one can couple into the SPP mode and the possibility of

photodamage at high intensity. Similarly, the |G∞0 Â+
SPP|

−1/3
scaling shows the benefit of the

highly directional dipolar radiation pattern in reducing RLOD
a .

3.6.1 Pearson Correlation Coefficient Sensitivity

Another sensing signal that can be used is the speckle intensity Pearson correlation coefficient

Cp(τ) defined as [272]

Cp(τ) =
Cov [I(0), I(τ)]

σ(0)σ(τ)
(3.100)

where I(t) is the speckle pattern at time t, consisting of the intensities Ii(t) measured at M

points ri. In the context of the SPP scattering system considered in this thesis, this could be

the intensity measured at points around the leakage radiation ring Ii(t) = I(φi; t), but more

generally can apply to any speckle pattern measured over a set of points. The (spatial) standard

deviation is σ2(t) =
∑M

i=1(Ii(t) − I(t))2/(M − 1) = I(t)2 − I(t)
2

and f(I) =
∑M

i=1 f(Ii)/M .

The covariance is defined as Cov[I(0), I(τ)] =
∑M

i=1(Ii(0)− I(0))(Ii(τ)− I(τ))/(M − 1). While

the sample mean and covariance use M − 1 as a divisor to give an unbiased estimate of the

population mean and variance, it is assumed throughout that M is sufficiently large that the
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difference between using M and M − 1 as a divisor is negligible. The inequality −1 ≤ Cp ≤ 1

applies. If the scattering configuration remains unchanged up to t = τ , the speckle remains

unchanged and, in the absence of noise, Cp = 1. Conversely, if the analyte particle enters the

sensing volume in the time interval, the scattering from the analyte particle changes the speckle

pattern and hence Cp < 1. Thus, a step in Cp indicates the presence of the analyte particle.

The Pearson correlation coefficient benefits from using the entire speckle pattern, allowing

for averaging out of noise over intensity measurements at different positions. Furthermore,

Cp is unchanged by scaling and addition of constant intensity to the speckle pattern, so that

global intensity fluctuations, e.g. due to fluctuating incident power, leave Cp unchanged. The

sensitivity for Cp is defined as

SC =
∣∣Cbind

p − Cp(0)
∣∣ = 1− Cbind

p , (3.101)

where Cbind
p is Cp(τ) in the case where an analyte particle has bound in the time interval τ and

remained bound. The LOD is defined as

LODC = m∆Cnoise
p (3.102)

where ∆Cnoise
p is the mean amplitude of the change to Cp due to noise. In order to calculate

these two quantities, the effect of perturbations to the intensity Ii on Cp must be considered

Ergodic Rayleigh Statistics Speckle

It is important to note that all the averaged quantities (i.e. Cov[I(0), I(t)] and σ) are spatially

averaged for a single speckle realisation. It has already been demonstrated that the speckle

arising from scattering from a rough surface is generally not statistically homogeneous owing to

the dipolar like directional scattering and therefore the speckle patterns are not ergodic. As

such, these spatial averages cannot be directly related to the averages over realisations. It is,

however, worth studying the case of a speckle pattern obeying Rayleigh statistics while also

being spatially ergodic (i.e. averaging over space is equivalent to averaging over realisations),

partially due to the simplification it provides. Furthermore, Eq. (3.56) shows that when
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|fC | � 1, as is the case in the leakage radiation ring, the contrast with respect to averaging over

realisations is unity, i.e. σζ(r) = 〈Iζ(r)〉. Provided the speckle size is much smaller than the

scale on which the dipole intensity envelope of 〈Iζ(r)〉 varies, the spatial average over a region

containing many speckles, but without significant variation in 〈Iζ(r)〉, can be considered to be

ergodic since different speckles are statistically independent (at least within the single scattering

mode). As a result, each speckle is an independent sampling of the same intensity probability

distribution (since 〈Iζ(r)〉 is approximately the same) over disorder realisation and, provided

there are sufficient number of speckles, the spatial averages will converge to the average over

realisations. Thus, there are practical conditions where spatial ergodicity approximately applies.

Under the assumption of the unity contrast with respect to the spatial mean and standard

deviation, one has σ(0) = I(0). The background speckle will be denoted Ib = I(0) and its

standard deviation σb = σ(0). The presence of the analyte particle perturbs the intensity at

ri by ∆Ii, so that the covariance can be expressed, using the properties of the covariance, as

Cov(Ib, Ib + ∆I) = Cov(Ib, Ib) + Cov(Ib,∆I) = σ2
b + Cov(Ib,∆I). As a result, the sensitivity is

SC = 1− σb
σ(t)

− Cov(Ib,∆I)

σbσ(τ)
. (3.103)

Additionally, σ2(τ) = σ2
b + σ2

∆ + 2 Cov(Ib,∆I), where σ∆ =
∑M

i=1(∆Ii −∆I)2/M . Replacing σb

with Ib results in

SC = 1−

(
1 +

σ2
∆

I2
b

+ 2
Cov(Ib,∆I)

I2
b

)− 1
2

− Cov(Ib,∆I)

Ib
√
σ2
b + σ2

∆ + 2 Cov(Ib,∆I)
. (3.104)

The intensity change arising from an analyte particle scattering intensity Ia,i into pixel i is

∆Ii = Ia,i + (Ia,iIb,i)
1/2 cos Φi and includes the interference term. The phase difference between

the background speckle and the analyte scattered field Φi is uniformly distributed between 0

and 2π and independent of the speckle amplitude Ib,i (and also Ia,i) for fully developed speckle.

As a result, using ergodicity, cos Φ = 〈cos Φ〉 = 0 and, from the independence of the phase

and amplitude, f(Ia, Ib)g(Φ) = f(Ia, Ib) g(Φ) for arbitrary functions f and g. This allows some
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terms in Eq. (3.104) to be calculated. For example, the covariance becomes

Cov(Ib,∆I) = Ib(Ia +
√
IaIb cos Φi)− Ib(Ia +

√
IaIb cos Φ)

= IbIa − Ib Ia

= 0 (3.105)

where all terms proportional to cos Φ vanish upon averaging and the independence of Ib and Ia

means IaIb = Ia Ib. In addition, ∆I = 0 and therefore the σ2
∆ is given by

σ2
∆ =

4

M

M∑
i=1

Ia,iIb,i cos2 Φi (3.106)

= 2Ia Ib (3.107)

where cos2 Φ = 〈cos2 Φ〉 = 1/2 arises from the uniform distribution of Φ. Substituting these

results into Eq. (3.104) gives

SC = 1−
(

1 +
2Ia

Ib

)− 1
2

(3.108)

≈ Ia

Ib
+O

(
I

2

a

I
2

b

)
.

In order to find LODC , the noise in intensity measurements must be translated into the noise

perturbation to Cp. The noise perturbs Cp in exactly the same form as Eq. (3.104), except ∆I

is replaced by the perturbation due to noise, as opposed to the perturbation from the analyte

particle, so that ∆Cnoise
p is given analogously to Eq. (3.103) as

∆Cnoise
p = 1− σ2

b + Cov(Ib,∆noise)

σb
√
σ2
b + σ2

noise + Cov(Ib,∆noise)
, (3.109)

where ∆noise,i is the noise in the ith pixel. Under the shot noise model, ∆noise,i is Poisson

distributed. For large enough photon numbers (' 1000 per integration time), the noise is well

approximated as a zero-mean Gaussian random variable with standard deviation matching

that of the underlying Poisson distribution (i.e. Eq. (3.91)), so that ∆noise,i ∼ N (0, Ib,iI1γ).
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Note that in addition to distributions over space and disorder (i.e. speckle) realisations, there

is now distribution over noise realisations. Assuming the noise in each pixel is independent,

∆noise, as a linear combination of zero mean Gaussian random variables, is distributed (over

noise realisations) according to a zero mean Gaussian distribution with standard deviation∑M
i=1 Ib,iI1γ/M

2 = IbI1γ/M . Similarly, the factor Ib∆noise is also a linear combination of zero

mean Gaussian random variables, and thus is also Gaussian distributed as follows

Ib∆noise =
1

M

M∑
i=1

Ib,i∆noise,i

=⇒ Ib∆noise ∼ N

(
0,

M∑
i=1

(
Ib,i
M

)2

Ib,iI1γ

)
, (3.110)

where again the distribution is over noise realisations. As a result, the covariance of the

background speckle and the noise perturbation Cov(Ib,∆noise) = Ib∆noise − Ib∆noise vanishes

averaging over noise realisations as follows

E (Cov(Ib,∆noise)) = E
(
Ib∆noise

)︸ ︷︷ ︸
=0

−Ib E(∆noise)︸ ︷︷ ︸
=0

= 0, (3.111)

where E(·) denotes averaging over noise realisations and Ib does not depend on noise realisations.

The (spatial) variance of the noise perturbation, σ2
noise is given by

σ2
noise =

1

M

M∑
i=1

(∆noise,i −∆noise)
2 (3.112)

Considering the distribution over noise realisations, due to the fact that both ∆noise,i and ∆noise

have normal distributions, in can be deduced that ∆noise,i −∆noise ∼ N (0, (Ib,i − Ib/M)I1γ). As
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a result, the noise average spatial standard deviation E(σ2
noise) is

E(σ2
noise) =

1

M

∑
i

E
[
(∆noise,i −∆noise)

2
]

=
1

M

∑
i

[
(Ib,i − Ib/M)I1γ)

]
= IbI1γ

(
1− 1

M

)
≈ IbI1γ (3.113)

where it has been assumed M � 1 for the final approximate result, and the result E(X2) = σ2

for a zero mean Gaussian distribution of standard deviation σ has been used. Replacing σ2
noise

with the noise averaged value E(σ2
noise) and Cov(Ib,∆noise) with E[Cov(Ib,∆noise)] in Eq. (3.109)

and also using σb = Ib results in

∆Cnoise
p = 1− (1 + I1γ/Ib)

−1/2

≈ I1γ

2Ib
+O

(
I2

1γ

I
2

b

)
. (3.114)

The binomial expansion is valid under the assumption Ib � I1γ, i.e. the average number of

photons incident on a pixel in one integration time averaged over all pixels is much larger than

one. Setting SC = LODC = m∆Cnoise
p gives ILOD

a for a correlation coefficient based sensing

setup as

ILOD
a =

mI1γ

2
. (3.115)

Compared to Eq. (3.95), both sensing metrics give comparable forms for ILOD
a , in the sense that

both are proportional to the detector property I1γ, though for the correlation coefficient, this

is the average around the whole leakage ring (or entire speckle pattern), as opposed to just a

given point for a pointwise intensity measurement limit. Note that Eq. (3.115) is intended as

an approximate scaling rule for the detection limits in terms of the intensities involved, and the

prefactors may not give an accurate result in any experiment owing to approximations made in

replacing quantities in ∆Cnoise
p with averaged quantities.
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3.7 Conclusion

In this section, a random SPP scattering system has been introduced as a route to single particle

sensing. In order to facilitate study of this biosensing platform, a review of some fundamental

principles and techniques of plasmonics and (random) scattering theory was undertaken. The

statistical properties of the speckle arising from SPP scattering from a rough metal surface were

studied in the single scattering regime and linked to the surface roughness property. Importantly,

the statistics of the speckle pattern were shown to be strongly dependent on position, and the far

field intensity is predominantly confined to the leakage radiation ring. Similarly, light scattered

from an analyte particle is also strongly confined to the leakage radiation ring. This confinement

is shown to have benefits in terms of improved sensitivity at points in the leakage ring. The

single scattering sensitivity analysis using the scattering model developed revealed that binding

of a ‘biological’ particle with radius of 10nm gives a fractional intensity change on the order

10−4, consistent with the intensity contrasts in detection of single proteins in iSCAT. In the shot

noise case, the LOD for intensity measurements was found to be independent of the surface

scattered intensity and proportional to the intensity scattered from the analyte particle. As

such, it is maximised in the leakage ring. Furthermore, RLOD
a ∝ I

−1/6
0 means one can decrease

the minimum detectable particle size via large intensity at the surface, so that tightly confined

SPP modes provide greater sensitivity for the same total mode energy.

Overall, the benefits of the proposed system can be summarised as

• simple SPR-like experimental setup

• strong interaction with analyte particle due to plasmonic confinement

• interferometric signal enhancement as discussed in Section 2.2.3

• no requirement for interferometric stability or external reference field

• stronger signal in the leakage radiation ring due to highly directional scattering

• no need for high quality surfaces due to random roughness

This list will be revisited later in Chapter 7 after more in-depth study.
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The single scattering analysis in this chapter considered simply the change caused by the

addition of an analyte particle and analysed this in the context of sensing. As the single

scattering regime was assumed, the change was found to be a simple interference of the analyte

particle scattered field with a (fixed) speckle field. Due to the dependence on phase, interference

effects are very sensitive to small changes in environment, including scatterer position. Thus,

it might be wondered whether further information on the particle may be extracted from the

signal, in particular on the analyte particle position. The next chapter investigates this and

explores how the proposed system enables SPT in the single scattering regime.
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Chapter 4

Tracking in the Single Scattering

Regime

Some of the work presented in this chapter has been published in Ref. [273].

In order to perform single particle tracking using the proposed random SPP scattering

system, there has to exist a method to extract the analyte particle trajectory from a time series

of speckle patterns. This chapter explores how the speckle pattern depends on the analyte

particle position in the single scattering regime and hence develops and studies an algorithm to

extract the analyte particle trajectory from the far field speckle intensity pattern.

4.1 Field Dependence on Particle Position

Starting from the Born approximation of Eq. (3.68), the field Ea(r; ra) scattered from an

analyte particle centred at position ra occupying a volume Va (of arbitrary shape) above the

thin film structure is given by

Ea(r; ra) =
ω2

c2

∫
r′∈Va

[εa(r
′)− εd]G0(r, r′)E0(r′)d3r′ (4.1)

where G0(r, r
′) is the Green’s tensor for the thin film geometry given by Eq. (3.29). Upon

shifting the analyte by δr = (δx, δy, δz), the scattered field can be calculated in the same

way but with the integral over a different volume V ′a, corresponding to the original volume Va
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occupied by the analyte translated by δr, with a translated dielectric function ε′a(r). Assuming

the particle is spherically symmetric or the particle does not rotate upon translation (see later

for a discussion of analyte particle rotation), the transformed dielectric function is related to

the original one through ε′a(r + δr) = εa(r). As a result, the scattered field from the shifted

particle, Ea(r; ra + δr), is given by

Ea(r; ra + δr) =
ω2

c2

∫
r′′∈V ′

[ε′a(r
′′)− εd]G0(r, r′′)E0(r′′)d3r′′. (4.2)

A change of variables r′′ = r′ + δr translates the integration volume from V ′ back to V , and

the integral becomes

Ea(r; ra + δr) =
ω2

c2

∫
r′∈V

[εa(r
′)− εd]G0(r, r′ + δr)E0(r′ + δr)d3r′. (4.3)

Compared to Eq. (4.1), the integrals are closely related, the only change being the shift of

r′ to r′ + δr in the arguments of G0 and E0. For a plane wave SPP illumination, it follows

from Eq. (3.5) that, for an analyte particle above the thin film stack, the fields evaluated

at different positions are related by E0(r
′ + δr) = eikSPPδxe−κdδzE0(r

′), assuming the analyte

particle remains in the same medium. Recalling from Chapter 3 that the far field is proportional

to the 2D (x, y) Fourier transfrom of the field at z = 0 or z = −d depending on whether the

observation point is above or below the multilayer stack, the Fourier transform of Eq. (4.3) is

considered. The scattered field below the mulitlayer stack in the Fourier plane Ẽa(k‖; ra) (the

tilde will denote Fourier plane quantities throughout the chapter) is given by the 2D Fourier

transform with respect to the transverse position vector ρ = (x, y) of Eq. (4.3) evaluated at

the glass metal interface. This can be observed using Fourier plane imaging [274], while the

scattered field in the far field is proportional to it. From the properties of the Green’s tensor

established in Chapter 3, the Fourier space Green’s tensor G̃0 evaluated at different source

positions for observation points below the multilayer stack can be related using Eqs. (3.26) and

(3.30) through

G̃0(k‖;ρ
′ + δρ, z, z′ + δz) = G̃0(k‖;ρ

′, z, z′)e−ik‖·δρeikzδz, (4.4)
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where kz is defined as in Eqs. (3.24)-(3.26) and δρ = (δx, δy) is the transverse component of

δr. Substituting Eq. (4.4) into the Fourier transform of Eq. (4.3), the field scattered by the

translated analyte particle in the far field in the direction defined by k‖ is hence found to be

Ẽa(k‖; ra + δr) = eikSPPδxe−κdδz︸ ︷︷ ︸
change to E0

e−ik‖·δρeikzδz︸ ︷︷ ︸
change to G̃0

Ẽa(k‖; ra). (4.5)

Considering an observation point in the leakage radiation ring θ = ΘSPP, such that k‖ = k′SPP,

then it follows from Eq. (4.5) that the scattered field after the translation of the analyte particle

at azimuthal coordinate φ (measured anticlockwise from +x axis) on the leakage radiation ring,

Ẽ(φ; ra + δr), is related to the field at the same point before the translation Ẽ(φ; ra + δr)

through a phase and amplitude shift as follows

Ẽa(φ; ra + δr) = eiΨ(φ;δρ,δz)e−Λ(δx,δz)Ẽa(φ; ra). (4.6)

The phase shift and decay functions Ψ(φ; δρ, δz) and Λ(δx, δz) are defined as

Ψ(φ; δρ, δz) = k′SPPδx(1− cosφ)− k′SPPδy sinφ− κ′′dδz (4.7)

Λ(δx, δz) = k′′SPPδx+
[
κ′d +

(
k′2SPP − εdk2

0

)1/2
]
δz. (4.8)

Note that since the SPP wavenumber is larger than the wavenumber in the upper dielectric

(aqueous solution), kz = iκz = i(k′2SPP − εdk
2
0)1/2 is imaginary and thus the exp(ikzδz) =

exp(−κzzδz) factor in Eq. (4.5) contributes to the decay factor rather than the phase shift.

From Eq. (4.6) it can thus be seen that as the analyte particle moves, the direct scattered field

in the leakage ring acquires an additional phase shift Ψ with respect to the background speckle

reference field, in addition to a change in amplitude. Accordingly, in the single scattering regime,

the total field Ẽ = Ẽb + Ẽa including the light scattered from the random surface Ẽb changes

in a predictable manner with the position of the analyte particle. As a result, the changes in

the speckle pattern as the analyte moves around contain information about the trajectory of

the analyte particle.
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4.2 Tracking Algorithm

In a tracking scenario, multiple frames of the speckle intensity pattern are collected over time

so as to capture the dynamics of the analyte particle. When the ith frame (i = 1, 2, . . .) is

measured at time ti, the particle is located at ri which gives rise to a speckle pattern Ĩi(φ)

around the leakage ring. It is assumed that the time over which the measurements are made

is small compared to the timescale over which the analyte particle moves, so that the particle

can be considered to be in the same position throughout the measurement. Within the single

scattering regime, Ĩi(φ) is given by

Ĩi(φ) = |Ẽ(φ; ri)|
2

(4.9)

= |Ẽb(φ) + Ẽa(φ; ri)|
2

(4.10)

= Ĩb(φ) + Ĩa(φ; ri) + 2 Re
[
Ẽ∗b (φ) · Ẽa(φ; ri)

]
, (4.11)

where Ĩb = |Ẽb(φ)|
2

and Ĩa = |Ẽa(φ; ri)|
2

are the background speckle intensity and analyte

particle scattered intensity respectively. As established in Chapter 3, small biological particles

scatter weakly compared to the light scattered from a rough metal surface and so it may be

assumed Ĩa � Ĩb, allowing Ĩi to be expressed

Ĩi(φ) ≈ Ĩb(φ) + 2 Re
[
Ẽ∗b (φ) · Ẽa(φ; ri)

]
. (4.12)

The interference term depends on particle position, tracing out different fringe patterns at

different points, φ, on the ring (see Fig. 4.1 for a viualisation of these fringe patterns). As the

phase of the background speckle Ẽb(φ) is random and unknown, the initial fringe displacement is

unknown. As a result, there is insufficient information in two frames of intensity measurements

to extract the change in position δrij = rj − ri between the frames. For example, consider

taking two frames, for which the background speckle subtracted intensity in the ith frame,
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0

0 1

Figure 4.1: (center) Example scattered intensity in the Fourier plane and the profile around the
leakage ring Ĩi(φ). (panels) Fringe patterns one would see at different points on the ring from scanning
the analyte particle in the x and y directions. In the φ = 0 direction, no fringes are seen as the phase
of Ẽa does not change, so only decay effects are seen. Due to the random speckle phase, the fringe
pattern has an unknown (and different) offset at each φ, as depicted by the solid black lines. Figure
reprinted with permission from Ref. [273] © 2021 IEEE.

∆Ĩi = Ĩi − Ĩb, is an interference term given in each frame in the jth pixel by

Frame 1: ∆Ĩ1 = Aj cos Φj (4.13)

Frame 2: ∆Ĩ2 = Aje
−Λ(δr12) cos [Φj + Ψ(φj; δr12)] . (4.14)

where δr12 is the shift in analyte position between the two frames. With N pixels, there are

2N measurements, while there are N unknown amplitudes Ai, N unknown phases Φi and three

unknown components of the shift δr12, giving 2N + 3 > 2N unknowns. As there are more

unknowns than measurements, finding δr12 from two frames of data is an underdetermined

problem. To overcome this issue, the tracking algorithm can use three frames in an analogous

manner to phase shifting interferometry [275, 276], in which three or more known reference

phases are used to calculate an unknown wavefront phase. The interference term in the three
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frames is given by

Frame 1: ∆Ĩ1 = Aj cos Φj (4.15)

Frame 2: ∆Ĩ2 = Aje
−Λ(δr12) cos [Φj + Ψ(φj; δr12)] (4.16)

Frame 3: ∆Ĩ3 = Aje
−Λ(δr13) cos [Φj + Ψ(φj; δr13)] . (4.17)

Now there are 3N measurements, but since Ai and Φi are fixed for all three frames, the number

of unknowns increases to 2N + 6 due to the three components of δr13. Provided N ≥ 6, the

problem is now solvable for the two shifts in position. Assuming that a reference measurement

of Ĩb(φ), which is fixed for a given surface roughness profile, is taken before the analyte particle

moves into the sensing volume, the background subtracted intensities ∆Ĩi(φ) = Ĩi(φ)− Ĩb(φ) for

three data frames (labelling them as i = 1, 2, 3) are given by

∆Ĩ1(φ) = 2 Re
[
Ẽ∗b (φ) · Ẽa(φ; r2)eiΨ21e−Λ21

]
(4.18)

∆Ĩ2(φ) = 2 Re
[
Ẽ∗b (φ) · Ẽa(φ; r2)

]
(4.19)

∆Ĩ3(φ) = 2 Re
[
Ẽ∗b (φ) · Ẽa(φ; r2)eiΨ23e−Λ23

]
, (4.20)

where Eq. (4.6) has been used to express Ẽa(φ; r1) and Ẽa(φ; r3) in terms of Ẽa(φ, r2), Ψij and

Λij are Ψ(φ; δrij) and Λ(δrij) respectively. Expanding the complex exponential in Eq. (4.18)

into real and imaginary parts gives

∆Ĩ1(φ) = e−Λ21 cos Ψ21∆Ĩ2(φ)− e−Λ21 sin Ψ21K̃(φ), (4.21)

where Eq. (4.19) has been used and K̃(φ) = 2 Im[Ẽ∗b (φ) · Ẽa(φ; r2)] defined. Following the same

process with Eq. (4.20) results in

∆Ĩ3(φ) = e−Λ23 cos Ψ23∆Ĩ2(φ)− e−Λ23 sin Ψ23K̃(φ). (4.22)
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Multiplying Eq. (4.21) by e−Λ23 sin Ψ23 and Eq. (4.22) by e−Λ21 sin Ψ21 and subtracting to

eliminate K̃(φ) gives a single equation for each point φ on the ring, which takes the form

u ·∆ = 0 (4.23)

where

u =


e−Λ23 sin Ψ23

e−Λ23−Λ21 sin(Ψ21 −Ψ23)

−e−Λ21 sin Ψ21


and ∆ = (∆Ĩ1,∆Ĩ2,∆Ĩ3)

T . The trigonometric identity cos Ψ23 sin Ψ21 − cos Ψ21 sin Ψ23 =

sin(Ψ21 −Ψ23) has been used to simplify the form of u. Note that Eq. (4.23) involves only

the measured intensity differences and the two shift vectors δr21 and δr23 and holds for any

value of φ on the ring. Assuming then that the intensity is sampled at N discrete angles φk,

k = 1, 2, . . . , Nφ, Eq. (4.23) can form a set of Nφ equations with 6 unknowns (three components

from each of the shift vectors). Finding a solution to this set of non-linear equations would

give the steps δr12 and δr23. By solving for each set of 3 consecutive frames, one can build

up the analyte particle trajectory via finding the shifts between each frame. A least squares

approach to solving Eq. (4.23) corresponds to extracting estimates of the δr21 and δr23 given

by the solution to the 6D (global) minimisation

(δr̂21, δr̂23) = arg min
(δr21,δr23)

N∑
k=1

(
u(φk) ·∆(φk)

|u(φk)|

)2

, (4.24)

where δr̂ij denotes an estimate of the true step δrij. The vector u has been normalised by its

magnitude in order to exclude the u(φk) = 0∀φk solution, which is always present. This least

squares approach to finding the particle shifts provides robustness against small perturbations

to the solution from the correct values of δr21 and δr23 due to experimental noise and the fact

that the small Ĩa term neglected in Eq. (4.12) is actually present. Successive application of the

algorithm to sets of 3 frames allows the trajectory of a particle from frame to frame over an
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arbitrary number of frames may be reconstructed.

4.2.1 Minimisation Procedure and Trajectory Consistency Check

An important component of the tracking algorithm is the choice of minimisation procedure.

The solution corresponds to the global minimum, as opposed to a local one. As such, it is

important to avoid converging to a local minimum. The global minimisation procedure used in

this thesis is a multi-start minimisation algorithm [277], in which a local minimisation algorithm

is repeated for multiple random start points and the lowest minimum is taken. While it is

possible that none of the starting points converge to the global minimum, the fact the tracking

algorithm uses three frames to simultaneously extract two steps allows for mitigation of this

problem. Overlapping sets of three frames allow separate estimates for the same step generated

from minimisation of different functions arising from different measurements. For example, δr23

can be estimated from frames 1,2,3 and from frames 2,3,4. By requiring the two estimates to

agree within some small margin for error, a consistency check indicates when the minimisation

is failing. In particular, inconsistencies can occur if either the minimum found is not the global

minimum, or the effects of noise or a non-negligible direct scattering term mean that the true

step no longer corresponds to the global minimum. In the first case, the minimisation procedure

can be rerun for the two relevant sets of frames with new additional random starting points until

consistent global minima for each are found. In the second case, while the algorithm cannot give

the correct step (regardless of the minimisation procedure), the consistency check nevertheless

indicates when the algorithm is failing.

4.2.2 Sign Ambiguity of Transverse Step

From Eq. (4.7) it can be seen that Ψ(φ;−δρ,−δz) = −Ψ(φ; δρ, δz). This means that, in the

absence of the decay factors, u(−δr21,−δr23) = −u(δr21, δr23) and the negative of the true

steps would satisfy Eq. (4.23). In reality, the decay of the field in the x and z directions

ensures −δr is not a solution. If the decay is weak (e.g. small δz) the exact backward step

may turn out to be either a very low local minimum in the minimisation landscape, or, if noise

is strong enough to sufficiently perturb the landscape, a global minimum. Since the decay
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in the z direction is over a much shorter length scale than in the x direction (κ′d � k′′SPP),

and the phase shift depends only weakly on δz, in practice, this incorrect sign error shows

up occasionally but is usually only seen in the estimate of the transverse step. In order to

reduce the occurrence of these sign ambiguities, an extra step is added to the algorithm. Firstly,

the minimisation algorithm is run as usual to find the global minimum, and then a second

minimisation is performed using the retrieved step with the transverse step reversed as the initial

start point albeit . If the second minimisation converges to a lower minimum, the new sign

flipped step estimate is taken, otherwise the initial estimate is retained. Sign errors therefore

only remain after this step if the flipped transverse step truly corresponds to a lower minimum

than the true step as a consequence of noise. When this occurs, the consistency check can be

used. Applying the consistency check to both the estimate from the global minimum, one can

pick the sign most consistent with the estimates from the overlapping sets of frames. With this,

the sign error can only persist if every set of three frames give the sign flipped result as the

global minimum, significantly less likely than for just a single set of three frames, in which case

the trajectory would be the exact opposite (at least in the transverse direction) of the true

trajectory. It should be emphasised, however, that in the majority of cases, the decay factor

ensures that there is no sign error and the true step corresponds to the global minimum. Figure

4.2 shows a schematic outline of the full algorithm including the consistency and sign ambiguity

checks.

4.3 Algorithm Performance

The tracking algorithm performance was studied using simulated data. In particular, the value

of the background field at each pixel was constructed by first generating a complex zero mean

Gaussian random number for each azimuthal pixel φi. This vector of Nφ Gaussian random

numbers was then convolved with a Gaussian smoothing function to yield a ring of speckle with

finite speckle size with a desired average angular width, where the convolution was cyclic to

preserve the periodic ring (i.e. that Ĩ(φ) = Ĩ(φ+ 2π)). The chosen speckle size was found to

have no significant effect on the algorithm, but was chosen to be 0.05 radians, corresponding

111



CHAPTER 4. TRACKING IN THE SINGLE SCATTERING REGIME

Figure 4.2: A flow chart of the tracking algorithm including the consistency check and sign flipping
steps. The sign switch the transverse component is denoted with a supercript − i.e. if δrb,fij =

(δxij , δyij , δzij)
T then δrb,f−ij = (−δxij ,−δyij , δzij)T . The parameters of the algorithm are Lthresh (the

distance below which separate estimates of the same step are considered consistent), Nmin (the initial
number of minimisation start points), ∆ (the amount to increase the number of start points by each

round) and N
(max)
min , the maximum number of start points to try before terminating.
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to observed leakage ring speckle patterns [278]. The analyte particle was modelled as a dipole

scatterer with dipole moment aligned with the incident SPP field, i.e. the particle scattered

field is calculated using Eq. (3.70). The derivation of the tracking algorithm does not, however,

require this approximation to be valid, it is merely used to reduce the simulation time. The

particle was assumed to undergo a 3D random walk, except it was not allowed to cross the

z = 0 interface. If a randomly generated step did take the particle below the interface to a z

coordinate −za, it was instead reflected off the interface to za > 0. The medium in which the

particle was diffusing was taken as water (refractive index nd = 1.33 [279]), while the particle

trajectory started 60 nm above a 40 nm thick gold film (refractive index nm = 0.28 + 2.93i [280])

on top of a glass substrate (refractive index ng = 1.5). The tracking algorithm does not require

the particle to be undergoing a random walk. Indeed, in most cases, the analyte particle will be

diffusing under the influence of a potential due to optical forces arising from the SPP field [281],

convection and thermophoresis caused by heating effects [282], in addition to any interaction

or surface potential that the analyte particle may experience from bound receptors or surface

charges [283]. The choice of a (reflected) random walk was to ensure an unbiased sampling of

propagation directions so that the algorithm performance could be more uniformly tested. The

simulation free space wavelength was λ0 = 600 nm, while the random walk was generated with

a fixed step size of 0.15λ0. With these physical parameters, the short range SPP wavenumber

and decay constant are kSPP = (1.50 + 0.04i)k0 and κd = (0.68 + 0.08i)k0 respectively. The

minimisation procedure used a multi-start trust-region-reflective method (using inbuilt Matlab

functions, specifically the ‘lsqnonlin’ function), with 100 random starting points and the search

space was bound to step sizes below λ0/2. Larger search spaces require significantly more start

points to find the global minimum at the same success rate as a smaller search space since the

probability of starting at a point that converges to the true global minimum reduces with search

space hypervolume. Minimisation was performed on all sets of consecutive frames i− 1, i, i+ 1,

with the result of the minimisation for each set of three frames providing estimates δr̂ij of δrij

for j = i− 1 and j = i+ 1. The consistency check threshold was set so that a step for which the

two step estimates differ by more than 10% was deemed inconsistent. When steps were found

to be inconsistent, the minimisation procedure was repeated on the two relevant inconsistent
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Figure 4.3: An example of a simulated trajectory reconstructed using the algorithm. Both noisy and
noiseless simulation results are shown. Figure reprinted with permission from Ref. [273] © 2021 IEEE.

sets of three frames, for 200 new random starting points, with new step estimates replacing the

previous estimate if a lower minimum was found. The consistency check was repeated with the

new estimates, and global minimisation repeated if the consistency check failed, adding 100

random starting points after each failure, up to a maximum of five times before the algorithm

was terminated.

For noiseless simulations, the algorithm was able to accurately reconstruct the parti-

cle trajectory, for sub-wavelength step sizes up to λ0/2, with fractional errors (defined as

|δr̂ij − δrij|/|δrij|) below 1%, corresponding to sub nanometre precision (see Fig. 4.3 for an

example trajectory reconstruction). In addition to a randomly generated background speckle, the

method was also tested on simulated speckle patterns generated by coupled dipole simulations

(see Chapter 5 for a detailed description of the coupled dipole simulation method) in which the

background surface scatterers consisted of 50 and 100 gold spheres of radius 60nm randomly

distributed in a 4LSPP × 4LSPP area on the metal surface, while the analyte particle was
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Figure 4.4: Distribution of errors for noiseless coupled dipole simulations with (left) 50 and (right) 100
background dipole scatterers. The 100 background scatterers has more significant multiple scattering
effects.

modelled as a 25nm radius sphere of refractive index 1.4. The relative frequency distribution,

in logarithmically scaled bin widths, of fractional error in the step estimate for three step

trajectories in coupled dipole simulations shown in Fig. 4.4. These simulations include multiple

scattering effects, and use numerical integration of Eq. (3.29) to find the Green’s tensor in the

near field (required within coupled dipole simulations). While the majority of fractional errors

are between 10−2 and 10−1 (corresponding to errors on the order of 1nm to 10nm), there is a

second prominent peak for fractional errors close to 2. This arises due to the sign ambiguity,

since the exact sign flipped step results in a fractional error of exactly 2. In a three step

trajectory, the sign flipping part of the algorithm still has an ambiguity in that, if switching

the sign of one of the sets of estimates (i.e. either from frames 1,2,3 or from frames 2,3,4)

improves the consistency of the two estimates of δr23, there is no way of determining which

set of estimates should be flipped. For longer trajectories, however, the choice can be made

based on the consistency with subsequent sets of estimates. For example, if one has a four step

trajectory where the consistency of the overlapping estimates of δr23 and δr34 is improved by

switching the sign of the estimates from frames 2,3,4, this is the set of estimates one should sign

flip, rather than switching the sign on the estimates from both frames 1,2,3 and frames 3,4,5,

which would also equally improve the consistency. This is based on the fact it is less likely for

two of the minimisation procedures to give the incorrect sign compared to one minimisation

problem giving the incorrect sign. Indeed, from Fig. 4.4, the frequency of sign errors is ∼ 5%,
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Figure 4.5: The dependence of the relative frequency of a given fractional error (|δr̂ − δr|/|δr|) on
the ratio of total particle scattered intensity to total background intensity, Ia/Ib, found without (right)
and with (left) the consistency check. Figure reprinted (with alteration, including additional data) with
permission from Ref. [273] © 2021 IEEE.

so that two separate minimisation problems from different sets of three frames giving sign errors

would have a probability of ∼ 0.0025. With 100 background surface scatterers, the stronger

multiple scattering reduces the algorithm performance, both in terms of the typical size of error

and in the frequency of the sign error, as seen by the larger relative frequency of fractional

errors close to 2 in Fig. 4.4(b) compared to (a).

It is important to consider the effect of noise on the algorithm performance. Simulations

(based on Gaussian random background speckle as opposed to coupled dipole simulations) were

performed assuming shot noise limited intensity measurements. Accordingly, the simulated

intensity measured in each azimuthal pixel was corrupted with noise. The noisy intensity was

derived from a Poisson distributed random variable with mean and variance corresponding

to the number of photons Ñk = Ĩi(φk)/I1γ incident on that pixel. Fig. 4.5 shows the relative

frequency of a given fractional error in the estimated step as a function of the ratio of the average

total intensity scattered by the particle in the first frame and the average total background

intensity, i.e. Ia/Ib, where Ia =
∑Nφ

k=1〈Ĩa(φk)〉/Nφ and Ib =
∑Nφ

k=1〈Ĩb(φk)〉/Nφ are the spatial

averages around the ring of the analyte and background scattered intensities. The tildes

denoting Fourier plane quantities have been dropped from the spatial averages Ia,b for notational

convenience. Realisation averages, denoted with angled brackets, here are taken over an
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Figure 4.6: Relative frequency of errors for the algorithm (left) with the consistency check and (right)
without the consistency check.

ensemble of 2700 different noise realisations, speckle realisations and particle trajectories. For

the simulations the total number of photons in the background speckle integrated around the

ring (Ñb =
∑Nφ

k=1〈Ĩb(φk)〉/I1γ) was assumed to be fixed at 1010, corresponding to a power of

3.3× 10−7W for a 10ms integration time. There is an optimal regime (here corresponding to

an intensity ratio of 7.7× 10−4) where the errors are comparable to the noiseless results. As

the particle scattered intensity decreases below this optimal regime, the change in intensity

as the particle moves is obscured by the shot noise, increasing the error in the step estimate.

On the other hand, as the particle scattered intensity becomes comparable to the background

intensity the errors increase due to the direct scattering term ignored in Eq. (4.12) becoming

significant and thus the approximation used in deriving the algorithm no longer holds. The

consistency check part of the algorithm can be seen to improve performance. When the check

is not used the algorithm can occasionally converge to a local minima corresponding to an

incorrect step. The reconstructed trajectory for shot noise limited measurements (at an intensity

ratio
∑N

k=1 Ia/Ib = 10−3) is also shown in Fig. 4.3. Whilst reconstruction errors larger than

the noiseless case can be seen, the errors remain . 1 nm. The relative frequency histograms

at selected scattered intensity ratios (i.e. vertical cross sections of Fig. 4.5) are shown in Fig.

4.6. Note Fig. 4.6 has different size bins compared to Fig. 4.5, and thus the values of the

relative frequency are different. Comparing Figs. 4.4 and 4.6, it can be seen that the effects

of multiple scattering, noise (see the smallest intensity ratio cases, Ia/Ib = 2.2 × 10−5 and

3.6× 10−6, of Fig. 4.6) and the direct scattering Ĩa contribution (see the largest intensity ratio

117



CHAPTER 4. TRACKING IN THE SINGLE SCATTERING REGIME

case, Ia/Ib = 1.7 × 10−1, of Fig. 4.6) are broadly the same. As any of these factors cease to

be negligible, the larger peak in the error distribution (corresponding to the best estimates),

shifts to the right, due to the fact the global minimum is perturbed away from the point in the

minimisation space corresponding to the true step δrij. Furthermore, the sign errors start to

appear with increasing frequency as any of the aforementioned contributions to the measured

intensity increase, evidenced by the growth of the peak around a fractional error of 2. As

described in relation to Fig. 4.4, this sign error is increasingly unlikely with longer trajectories,

though the larger the frequency in the three step trajectory case shown, the more likely this error

is to persist in longer trajectories. The Ia/Ib = 7.7×10−4 case demonstrates that when intensity

noise, the multiply scattered intensity and the direct scattered intensity are sufficiently small

in comparison to the single scattering interference term, the sign error occurs with negligible

probability and errors of ∼ 1% or below are overwhelmingly likely. From both Figs. 4.5 and

4.6, it is clear that the consistency check part of the algorithm improves average performance,

increasing the frequency of low error results. In the absence of the consistency check, even the

optimal Ia/Ib = 7.7× 10−4 case still has a non negligible probability of large errors, arising due

to the minimum found being a local, as opposed to global, minimum. These errors arise purely

from the minimisation procedure chosen. For the multi-start algorithm chosen, one would expect

similar improvements from simply running the minimisation from more start points initially

without any consistency check. The advantage with the consistency check approach is that

it reduces the computation time by preventing running unnecessary minimisation runs after

the true minimum has been found. Similar procedures could be implemented for alternative

global minimisation algorithms to inform when to terminate the minimisation process to save

computation time. The consistency check cannot, however, reduce the error of the algorithm

if the global minimum has been found, save for identifying if sign reversed estimate improves

consistency. In addition to helping reduce the occurrence of local minima related errors, the

consistency check flags up when no consistent estimates of a step are possible, thus informing the

user that one or both of the estimates of this step are likely to be unreliable. The dependence

of Ψ and Λ on the transverse component δρij = (δxij, δyij)
T of the shift is very different from

their δzij dependence. As such, the algorithm may have significant differences in the errors for
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Figure 4.7: The dependence of the relative frequency of the fractional error distribution in (left) the
transverse step, |δρ̂− δρ| /|δρ| and (right) the z step |δẑ − δz| /|δz| on Ia/Ib.

each component, and Fig. 4.7 shows the distributions of the fractional errors in the estimates of

both the transverse and z step. The dependence on Ia/Ib matches that seen Fig. 4.5, as would

be expected. The significant difference between the transverse and z errors is the absence of the

peak in frequency at a fractional error of 2 associated with the sign error. As was discussed in

Section 4.2.2, this can be attributed to the fact that the sign error arises from the fact the Ψ is

even, so is insensitive to the sign, while Λ(−r) 6= Λ(r) in general. Since Ψ only depends weakly

on z while Λ depends on z strongly (since κ′′d/κ
′
d ≈ 0.1), the algorithm is much more sensitive

to the sign of z.

Since the measured light corresponds to the interference between the background and analyte

scattered signal, parameters such as the SNR and SBR follow the analysis in Chapter 2 (in

particular the results presented in table 2.2).

4.4 Limitations and Extensions

In addition to the effects of noise, a few other factors must be considered in assessing the

tracking algorithm. Firstly, as the Born approximation is used, the method only applies in the

single scattering regime. The coupled dipole simulations include multiple scattering effects, but

these are sufficiently weak in the results of Fig. 4.4 that the method still works fairly well. To

understand the effects of multiple scattering on the algorithm, it is useful to categorise different
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multiple scattering paths based on the role the analyte particle plays in them. There are paths

which do not involve any scattering from the analyte particle, and the light is multiply scattered

from the surface only. Another set of paths only involve a single scattering event from the

analyte particle, with scattering from the surface only before and after this scattering event,

and the final set of scattering paths are those that are scattered multiply from the analyte

particle, revisiting (via surface scattering) the analyte particle after being scattered from it,

possibly multiple times. The general effects of different scattering paths in the context of

sensing/tracking are discussed in greater detail in Chapter 5. Here, their effects in the context

of this single scattering algorithm are briefly considered. Multiple scattering from the surface

only (i.e. scattering paths not involving the analyte particle) has no effect on the method, since

this only affects the background field Ẽb, and the algorithm does not rely on any particular

property of the background speckle. Additionally, for small particles, the third class of paths

involving multiple scattering events from the particle has negligible effect on the scattered

field. The second class, involving multiple scattering from the surface before and after a single

scattering event from the analyte particle, does have an effect on the validity of the algorithm.

In particular, the field experienced by the particle includes the light scattered from the surface,

so that Eq. (4.1), rather than just containing the incident field, takes the form

Ea(r; ra) =
ω2

c2

∫
r′∈Va

[εa(r
′)− εd]G(r, r′) (E0(r′) +Eb(r

′)) d3r′, (4.25)

where Eb(r) is the speckle field scattered from the rough surface, but here evaluated in the

near field in the position of the analyte particle, rather than in the leakage radiation ring

in the far field. The phase and amplitude variation of this near field speckle contribution is

fixed but unknown for a given realisation of the surface scattering potential. As such, if |Eb|

is comparable to or larger than |E0| at the particle’s position, the algorithm breaks down.

In addition, scattering from the surface after the scattering from the analyte particle means

G 6= G0, i.e. the Green’s tensor is not that of a flat interface multilayer structure, but instead

includes the rough surface.

As well as multiple scattering, the effect of the rotation of the particle, which was ignored in
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the algorithm derivation, must be considered. In particular, it was assumed that V ′a was related

to Va by a translation by δr only. For a non-spherically symmetric particle, if the particle rotates

between two frames, the volumes are also oriented differently. Provided the optical response of

the analyte particle is close to isotropic (i.e. αa ∝ I), the effects of rotation on the scattered

field are negligible. If the particle has a significantly different response along a particular axis,

as for example may be the case for a long thin rod shaped analyte particle, then the particle

orientation can strongly affect the scattered field. In theory, provided one has a model for the

particle shape, the effect can be accounted for within the algorithm. By calculating, whether

numerically or analytically, the integral
∫
G0(r, r′)E0(r′) over all the orientations of the particle,

one can calculate the phase and amplitude changes for a given rotation. As a result, the phase

and amplitude shift functions are now also dependent on particle orientation ξ (parameterised

by for example the orientation of the principal axes of the analyte particle), Λ(δr, ξ1, ξ2) and

Ψ(δr, ξ1, ξ2), where ξ1 and ξ2 are 3D vectors consisting of the orientation of the three analyte

particle principal axes before and after the shift respectively. From here, the algorithm can

proceed in the same way as outlined above in solving Eq. (4.24), except with the new phase and

amplitude functions. Indeed, the tracking algorithm can be applied to any form of the phase

and amplitude function. Such an approach, however, adds several complications. Firstly, the

calculation of Λ and Ψ is more involved and may not be possible analytically, depending on

the particle shape, which may slow down the algorithm. Perhaps more significantly, the extra

parameters that have to be minimised over increase the dimensionality of the minimisation

problem. In this case, the unknowns are the two 3D shift vectors between the frames, and the

three 3D orientation vectors at each frame, giving a 15 dimensional minimisation problem (as

opposed to 6 dimensional in the no rotation case). The significant increase in dimensionality

makes the minimisation search challenging, and possible unfeasible. Furthermore, such a method

requires an explicit model for the analyte particle shape, and is only valid as far as this model

can be applied. The effect of a non plane wave SPP illumination can similarly be incorporated

into the model. Again, provided one has a model for E0(r) which allows for the calculation

of the integral
∫
G0(r, r

′)E0(r
′), the resulting phase and amplitude functions Λ(r1, r2, ξ1, ξ2)

and Ψ(r1, r2, ξ1, ξ2) can be fed into the algorithm. Due to the non-uniform illumination, the
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phase and amplitude shifts are no longer a function of the difference in positions and therefore

there are three additional unknown parameters (i.e. r1 and r2 as opposed to δr12) one must

minimise over. In order to implement the higher dimensional versions of the algorithm, the

minimisation procedure would most likely have to be altered from the brute force multiple start

point approach, but provided the spherically symmetric particle approximation holds and the

amplitude envelope for a non-uniform illumination varies over a much longer length scale than

the distance the analyte particle moves between frames, the simplest version of the algorithm

presented in this chapter will remain accurate. Note that the tracking algorithm does not

require a specific minimisation algorithm in solving Eq. (4.24), and could be implemented using

alternative algorithms to the multiple start point one used here, such as simulated annealing

[284].

It is worth also mentioning that the phase and amplitude functions can be relatively easily

modified to include different observation positions and different plane wave illuminations to the

SPP leakage ring based approach investigated in this thesis. These alternative forms follow from

Eq. (4.5) by choosing the k‖ and kz for the appropriate observation positions and replacing the

exp(ikSPPδx− κdδz) factor with exp(ikinc · δr) for a given incident wavevector kinc.

Another limitation of the algorithm is that it relies on the assumption that only a single

analyte particle is moving in the sensing volume. When there are multiple moving scatterers,

the method breaks down even in the single scattering regime, since the intensity changes are the

sum of many interference terms from each moving scatterer. As such, the tracking algorithm

is only applicable at low concentrations were there is unlikely to be more than one analyte

particle in the sensing volume at any one time. Therefore, the algorithm may be appropriate

for tracking single molecular machines such as myosin on a substrate [285, 286].

Finally, the algorithm requires the analyte particle to be sufficiently near the surface that the

SPP field is significant. If it diffuses more than a few decay lengths Ld away from the surface,

the perturbation to the speckle pattern becomes too weak to detect. As such, the method is best

suited to monitoring processes occurring at the surface, such as the interaction of an analyte

protein with receptors on the surface or a molecular machine bound to the surface. The in-plane

decay on the length scale LSPP introduces a similar limitation on the region of the surface over
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which the particle can be tracked, though the fact that generally LSPP � Ld means this is a

much looser restriction. While the restricted volume within which the particle can be tracked

is a limitation of the method, it does also increase the probability that only a single analyte

particle is diffusing within the sensing volume at any one time.

4.5 Conclusion

In this section, an algorithm has been developed capable of extracting a particle’s trajectory

as it moves near the surface from the speckle pattern formed by the random scattering of

SPPs. Simulations show it to be capable of nanometre level precision, depending on the noise

parameters. In addition to noise, other factors which can affect the performance of the algorithm

are considered such as rotation or non uniform illumination, and possible extensions to mitigate

the effect of such factors on the tracking algorithm are considered. The generalisation of the

algorithm to a wider range of experimental setups is also discussed.

The tracking algorithm relies on the predictable changes to the interference of the background

speckle and the analyte scattered field that occurs in the single scattering regime, and thus

only works when multiple scattering effects are negligible. It is important to consider the role

multiple scattering has on the perturbation to the speckle pattern caused by the analyte particle,

both in the context of the proposed tracking algorithm and more generally in the entire sensing

system.
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Chapter 5

Role of Multiple Scattering in

Sensitivity

Some of the work presented in this chapter has been published in Refs. [287] and [288].

Until now, the system introduced in Chapter 3 has been studied in the single scattering

regime, in which the effects of multiple scattering are considered negligible. In this chapter, the

role of multiple scattering in the sensing setup is considered, and in particular the effect it has

on the sensitivity of the system

5.1 Multiple Scattering Theory and Phenomena

Multiple scattering increases the analytic complexity required in modelling light scattering, but

it is often essential as a diverse range of phenomena are observed within multiple scattering

environments. While all orders of scattering (i.e. single, double etc.) occur in any given scenario,

the relative importance of different terms varies with the parameters of the system. A parameter

to measure the strength of multiple scattering is the scattering mean free path ls, the average

distance travelled between scattering events. Depending on how this compares to other length

scales of the system, one can see different properties of scattered light. For example, when ls > L,

where L is the length scale determined by the size of the scattering region, single scattering is

dominant. While multiple scattering effects are important whenever ls < L, there are significant
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differences between ls > λ and ls < λ, where λ is the wavelength of the scattered waves. Thus,

it is important to consider different regimes within multiple scattering, and this section aims to

review key features and phenomena that occur within these different multiple regimes.

5.1.1 Diagrammatic Representations

As discussed in Chapter 3, a multiple scattering problem can be expressed as a Lippmann-

Schwinger or Dyson integral equation (Eqs. (3.16) and (3.19) for the electric field and Green’s

tensor respectively), with similarly structured equations existing for other quantities also

[24, 26, 27, 221, 289]. The iterative nature of these equations allows them to be expressed as

infinite series. It is often convenient to represent these equations and series diagrammatically,

analogous to Feynman diagrams commonly used in quantum field theory. A typical diagrammatic

representation of the Dyson series is shown in Fig. 5.1. While different conventions exist

within different contexts, generally lines represent Green’s functions, either unperturbed (G0)

or perturbed (G), and nodes represent a factor of the scattering potential V (r), which for

Maxwell’s wave equation is V (r) = ε(r)ω2/c2. Each node has a position associated with it, as

do the start and end points, which provide the arguments for the Green’s tensor connecting the

nodes. Positions associated with intermediate nodes are integrated over (but not the start and

end points).

r′ r r′ r r′ r r′ r
+ + + . . . =

Figure 5.1: Diagrammatic representation of the Dyson equation. Dotted lines represent unperturbed
Green’s tensors G0 while solid lines represent total Green’s tensors G including the effect of scatterers.
Nodes (•) represent scattering events, introducing a factor of the scattering potential V (r). Intermediate
positions are integrated over.

In addition to providing a shorthand notation for the integrals and allowing an intuitive

physical interpretation to the equations in terms of scattering trajectories, certain diagrams can

be grouped together based on similar structure and approximate solutions based on combining

certain diagrams can be found [24, 26, 27]. The exact rules for averaging diagrams (i.e. the terms

in a Born or Dyson series) depend on the statistics of the scattering potential V (r) = εs(r)ω
2

c2
.

A commonly used model is to treat V (r) as a zero mean Gaussian process [24, 254]. This allows
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a solution to the Dyson equation for the perturbed Green’s function, averaged over random

scattering realisations, in terms of a quantity known as the self energy Σ, which is the sum

from a subset of diagrams with a connected structure. For a scalar wave satisfying the scalar

Helmholtz equation in a homogeneous background, the solution can be conveniently expressed

in Fourier space as [24]

〈G̃(q)〉 =
−1

k2
0 − q2 + Σ(q)

. (5.1)

The form of Eq. (5.1) indicates one common feature of multiple scattering, namely that it shifts

the dispersion relation. From comparison to the unperturbed Green’s function G̃0 = −1/(k2
0−q2),

for which the dispersion relation for a mode of wavevector q is q = k0 = ω/c, the dispersion

relation with multiple scattering present becomes q2 = k2
0 + Σ(q). This dispersion relation

shift due to multiple scattering has been studied in the context of SPP scattering specifically

[245, 290, 291, 292, 293]. It is worth noting that, in this scalar wave model, the elastic scattering

mean free path can be related to the self-energy via l−1
s = − Im[Σ(q)]/k0 [24]. A form of ls

applicable to a collection of scatterers with scattering cross-section σs and number density n,

valid at small n, is ls = (nσs)
−1 [24]. This form matches intuitively with what one would expect

the mean distance travelled between collisions to be for a particle moving through a collection

of objects of physical cross section σs. A related quantity is the transport mean free path lt,

which defines the length over which the direction of propagation of a photon is randomised [294].

For isotropic scattering, this is identical to ls, however they differ for anisotropic scattering due

to the fact a single scattering event does not completely randomise the direction in which a

photon is scattered and it retains some memory of the initial propagation direction.

5.1.2 Light Diffusion

Analytical solutions to the Dyson or Lippmann-Schwinger type equations of multiple scattering

require approximations to which sets of diagrams can be neglected and which provide significant

contributions, and as such are limited to restricted range of parameters, while numerical solutions

can be computationally demanding, especially when requiring Monte Carlo simulations to study
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statistical properties over many realisations. An alternative approach often taken is to use

transport theory [294, 295], in which one considers a differential equation for the specific intensity

(intensity per unit solid angle in a given direction) known as the radiative transport equation

(RTE) [27], equivalent to the Boltzmann transport equation applied to light transport [295].

When the system is much larger than the transport mean free path lt (e.g. the thickness of a

slab of random media z � lt, when considering the transmission of intensity through a wide

slab) such that light undergoes many scattering events before leaving the scattering media,

absorption is weak in comparison to scattering (lt > Labs where Labs is the absorption length

in the scattering media) and scattering is close to isotropic, the RTE simplifies to the much

simpler diffusion equation, and thus the well developed theory of the diffusion equation can be

used to model intensity transport [296]. The transport theory/diffusion approach is valid when

the many scattering events randomise the propagation of the scattered light, and the random

walk of many photons through multiple scattering events gives rise to diffusion in the same

way Brownian motion of particles results in diffusion. While these equations can be understood

heuristically in terms of random walks, it is possible to derive the RTE and a diffusion equation

from the Lippmann-Schwinger equation under the approximation that ls � λ0 so that the effects

due to interference between different diagrams average out [27]. Within such an approach, it is

possible to define a diffusion coefficient D for the transport of light [297].

5.1.3 Multiple Scattering Phenomena

One of the key differences introduced by multiple scattering compared to single scattering is that

the field incident on a given scatterer is the sum of the fields scattered from all other scatterers,

plus the illumination field. In a random scattering configuration, this means that the field incident

on a particle can be a (near field) speckle pattern arising from the interference of many randomly

scattered waves. As such, even when the incident illumination is homogeneous, the field incident

on a scatterer can be highly dependent on its position. Certain regions, where scattered light adds

in phase give rise to high intensity regions known as hotspots [298]. Scatterers in such hotspots

scatter more light due to the higher intensity incident upon them. In the context of sensors,

this hotspot mechanism enables greater sensitivity when the analyte particle is in a hotspot [31].
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Figure 5.2: Examples of reciprocal scattering paths contributing to coherent backscattering. In the
backscattering direction θ = θ′, the scattering paths have identical phase and amplitude and add up in
phase.

In addition to elastic scattering, the hotspot effect is used to enhance fluorescence and Raman

scattering [298, 299, 300]. While random scattering environments such as rough surfaces give

rise to hotspots [298]), specifically engineered structures such as metallic nanoparticles near

metal interfaces are also used to generate hotspots [301, 302]. Another phenomenon arising from

the inhomogeneous nature of the scattered light, is fluctuations in the local density of states

(LDOS). The number of available modes a given scatterer can scatter light into, described by

the LDOS, depends on the arrangement of nearby scatterers, and as such can vary significantly.

The LDOS fluctuations introduced by multiple scattering have significant consequences for

fluorescence, with emitters at a position with high LDOS having reduced lifetime [303, 304, 305].

Furthermore, LDOS fluctuations introduce intensity correlations to speckle patterns known

as C0 correlations [306, 307, 308]. As well as C0 correlations, multiple scattering introduces

further intensity correlations into speckle patterns. In Chapter 3, the intensity correlation

function decays over the length scale given by the speckle size, and this correlation within

a speckle (C1 correlation) is present within the single scattering regime. Significant multiple

scattering introduces additional, long range correlations (C2 and C3 correlations) between

individual speckle spots [24, 28, 309, 310, 311]. Coherent backscattering, weak localisation and

Anderson localisation (also called strong localisation) are related phenomena that arise due
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to strong multiple scattering and have received much research interest [312]. They all arise

due to the interference of reciprocal scattering paths, where reciprocal scattering paths are

those that visit the same scatterers in opposite order. Reciprocity means the light propagating

along the paths acquires the same phase and amplitude shifts [219, 313, 314]. Theoretical

descriptions of localisation can become very involved, but the principle is relatively intuitive to

understand, especially in the context of coherent backscattering. If one considers scattering of

light incident at an angle θ into an outgoing angle π + θ′ (relative to the same fixed axis) by

two reciprocal scattering paths, as shown in Fig. 5.2, one sees the only difference in phase and

amplitude of the two contributions arises from propagation to the first scatterer and from the

final scatterer. In the backscattering direction θ′ = θ, the two paths contribute a scattered field

with identical phase and amplitude and therefore the contributions add up in phase. As such,

the backscattered intensity is doubled relative to what one would expect from assuming all

scattering paths add with random phase and one sees an intensity peak in this direction. Outside

a narrow angular range ∼ λ/ls around the backscattering range, the phase difference between

the incoming and outgoing legs of the respective paths is sufficient to ensure the contributions

add up with random phase. Note that the single scattering contribution does not have a coherent

backscattering peak as there is no reciprocal scattering path to a path with a single scatterer.

As such, coherent backscattering is not seen in the single scattering regime. It has, however,

been experimentally observed for a range of scattering environments, including in the scattering

of SPPs [315, 316, 317, 318, 319, 320].

More generally, weak and Anderson localisation arise as loop paths add in phase due to

reciprocity and increase the intensity of light scattered back to a given point. Initially, in the

weak localisation regime, this serves to reduce the rate of intensity diffusion (i.e. a smaller

effective diffusion coefficient D). As disorder decreases, the Anderson localisation regime is

achieved, D → 0 and scattered light modes are confined to a region on the scale of the localisation

length ξ. Anderson localisation is a wave interference phenomena, and thus is not restricted

to light but can also occur in the random scattering of any waves, including electromagnetic

waves such as SPPs [212, 220, 252, 312, 321, 322]. Experimentally, Anderson localisation has

been observed for a range of wave phenomena including electrons, cold atoms and sound waves
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[323, 324, 325, 326, 327, 328]. Anderson localisation of light has also been experimentally realised

using disordered photonic structures [329, 330, 331] and disordered optical fibres [332, 333], as

has Anderson localisation of SPPs [334, 335, 336]. There is evidence to suggest that, while

Anderson localisation of scalar waves by a random 3D arrangement of point scatterers is possible,

the near field interaction in the scattering of vector electromagnetic waves can prevent it in

three dimensional light scattering by point scatterers [337, 338]. Importantly, it arises due to

the specific form of the electromagnetic Green’s tensor at small distances, rather than the vector

nature, and similar models of elastic vector waves, which take a different near field form, do

exhibit Anderson localisation [337, 339].

5.1.4 Coupled Dipole Model

The coupled dipole model is a scattering model that accounts for all orders of multiple scattering

by a collection of point dipole scatterers. Thus it can describe systems where the individual

scatterers are sufficiently small to be described as point scatterers, and additionally, in what is

referred to as the discrete dipole approximation, as an approximation to larger scattering objects

which have been discretised into small elements which can be modelled as point scatterers. Each

point dipole has a dipole moment pj, allowing the total field E(r) outside the volume of the

scatterers, when illuminated by an incident field E0, to be expressed [340]

E(r) = E0(r) +
k2

0

ε0

N∑
j=1

G(r, rj)pj, (5.2)

where G is the Green’s tensor for the background medium (note for the rest of this chapter,

for notational convenience, G as opposed to G0 denotes the background Green’s tensor in

the absence of any scatterers), rj is the position of the jth scatterer and N is the number

of scatterers. The dipole moment is then given by pj = α̃jEexc(rj), where α̃j is the ‘bare’

polarisability of the jth scatterer (the meaning of this will become clear) and Eexc(rj) is the

exciting electric field incident on the jth scatterer, distinct from the total electric field [340, 341].

In particular, Eexc includes the field radiated by all other dipoles and the field reflected from
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background inhomogeneities, and can be expressed

Eexc(rj) = E0(rj) +
k2

0

ε0

Gref(rj, rj)pj +
k2

0

ε0

∑
i 6=j

G(rj, ri)pi (5.3)

where Gref(rj, rj) is the part of the Green’s tensor describing reflection of interfaces or inhomo-

geneities. The first term is the incident field, the second term describes reflection of the light

scattered by the jth scatterer back onto itself while the final term is the light scattered from

all other dipoles onto the jth scatterer. Substituting Eq. (5.3) into pj = α̃jEexc(rj) allows the

formation of a self-consistent equation for the dipole moments pi as

pj = α̃jE0(rj) +
k2

0

ε0

α̃jGref(rj, rj)pj +
k2

0

ε0

∑
i 6=j

α̃jG(rj, ri)pi. (5.4)

Defining a dressed polarisability αj = (I − (k2
0/ε0)α̃jGref(rj, rj))

−1α̃j, Eq. (5.4) becomes

pj = αjE0(rj) +
k2

0

ε0

∑
i 6=j

αjG(rj, ri)pi. (5.5)

The difference between the bare and dressed polarisability is that the bare polarisability describes

the polarisability of the scatterer in a homogeneous background, while the dressed polarisability

accounts for interaction with the background dielectric environment. From now on, polarisability

shall refer to the dressed polarisability unless otherwise stated. The resulting set of linear

coupled dipole equations can be expressed as

N∑
j=1

Mijpj = p0,i, (5.6)

for i = 1, 2, . . . N , where p0,i = αiE0(ri) is the dipole moment induced by the incident field in

the ith scatterer, the matrix elements Mij are defined by

Mij =


I i = j

−k20
ε0
αiGij i 6= j,

(5.7)
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for i = 1, 2, . . . N and the notation Gij = G(ri, rj) has been introduced. Solving Eq. (5.6) for

the N dipole moments then allows E(r) to be found at any position outside the volume of the

scatterers using Eq. (5.2).

5.2 Enhancement Factors

Studies have established that light scattered by a multiple scattering environment is sensitive

to the addition of a single scatterer [342, 343, 344], and also the position of a single scatterer,

enabling localisation [345, 346]. From a sensing or tracking perspective, it is useful to understand

how these perturbations in the multiple scattering regime differ from the single scattering case,

and in particular which regime is more sensitive to the addition of a single scatterer. This

would allow for optimising of sensor design by ensuring the scattering environment is in the

correct regime. While the hotspot mechanism is an example of a multiple scattering effect that

gives rise to increased sensitivity, it is also possible for a scatterer to be in a ‘dark spot’ in

which destructive interference of scattered fields gives rise to low intensity regions, resulting

in reduced scattering. Thus, the comparison of the two regimes requires more in depth study

to quantify the effect of these competing phenomena, along with other multiple scattering

effects. In addition to determining which regime is more sensitive, it is also useful to study what

magnitude of difference is achievable, and the dependence on the strength of multiple scattering

(i.e. the scatterer density or scattering mean free path) or other scattering parameters (such as

the individual scatterer properties).

In order to quantify the effects of multiple scattering within the sensing system, consider

the coupled dipole equation for an arbitrary arrangement of N point scatterers with dressed

polarisabilities αi in positions ri for i = 1, 2, . . . , N in a background with Green’s tensor G,

which, when illuminated by an incident field E0, gives rise to a total electric field E(r) given by

Eq. (5.2). At this point, beyond the validity of the point scatter approximation and the absence

of magnetic media, no assumptions have been made about the scatterers or their positions.

Before studying the effect of adding an analyte particle to this system, it is worth pointing

out a few features of the matrix M defined in Eq. (5.7). Firstly, within the single scattering
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regime, the off-diagonal terms are negligible, meaning that Mij ≈ Iδij and pi ≈ p0,i, i.e. there

is negligible coupling between dipoles. Furthermore, if all the scatterers are identical, such that

αi = α ∀i, then M is a symmetric matrix, MT = M . This follows from the Onsager reciprocity

of the Green’s tensor G(r, r′) = GT (r′, r) [219]. Importantly, however, M is complex and not

Hermitian, i.e. M † 6= M in general. This distinction is emphasised as some properties of complex

symmetric matrices are very different to real symmetric matrices and also Hermitian matrices

(for example Hermitian and real symmetric matrices have real eigenvalues and are normal

matrices while complex symmetric matrices do not have these properties in general). Finally, if,

in addition to identical scatterers, the positions ri are random, M is a special class of random

matrix known as a Euclidean random matrix. An N dimensional Euclidean random matrix A is

defined by a deterministic function f(r, r′) and a set of N random points ri in Euclidean space,

with the (i, j) element given by Aij = f(ri, rj). In this case, f(r, r′) = −(k2
0/ε0)αG(r, r′).

The properties of Euclidean random matrices have been studied in a wide range of physical

contexts including optical scattering [347, 348, 349, 350]. When the scatterers are not identical,

M is not strictly a Euclidean random matrix as defined above, however many of the theoretical

approaches applied to Euclidean random matrices can still be used.

5.2.1 Adding a Scatterer

The addition of an analyte particle can now be considered by perturbing the scattering configu-

ration with the introduction of an additional point scatterer with polarisability αN+1 at position

rN+1. The perturbed system is described by a set of coupled dipole equations
∑N+1

j=1 M ′
ijp
′
j = p0,i

(i = 1, 2, . . . N + 1) analogous to Eq. (5.6) but for the new arrangement of scatterers with the

additional scatterer. The solution to this set of equations gives the modified dipole moments

p′j after the addition of the particle. The matrix elements M ′
ij for the perturbed system are

again given by Eq. (5.7) except now the indices i and j run from 1 to N + 1 (hence M ′
ij = Mij,

for i, j ≤ N). The new set of N + 1 dipole moments gives rise to the perturbed field E′ found

using Eq. (5.2) to be

E′(r) = E0(r) +
k2

0

ε0

N+1∑
j=1

G(r, rj)p
′
j, (5.8)
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where the sum now has N + 1 elements due to the additional scatterer and the perturbed dipole

moments p′j are used instead of the original ones. Combining Eqs. (5.2) and (5.8), the field

perturbation ∆E = E′ −E due to the addition of the scatterer is hence

∆E(r) =
k2

0

ε0

G(r, rN+1)pN+1 +
k2

0

ε0

N∑
j=1

G(r, rj)δpj, (5.9)

where δpj = p′j−pj is the perturbation to the jth dipole moment and, since there is no (N+1)th

scatterer in the unperturbed system, the prime has been dropped from pN+1. The first term of

Eq. (5.9) is the field radiated by the added dipole pN+1, while the second term is the change to

the field arising from the perturbation to the other N initial dipole moments due to addition of

the analyte particle. In the single scattering regime, the coupling between dipoles is negligible

and pi = p′i = p0,i meaning that pN+1 = p0,N+1, while δpi = 0 and the second term vanishes.

As a result, the single scattering perturbation ∆Ess(r) reduces to

∆Ess(r) =
k2

0

ε0

G(r, rN+1)p0,N+1. (5.10)

Note this matches Eq. (3.70), derived in the single scattering Born approximation. The coupled

dipole equations for the perturbed N + 1 scatterer system can be split into the N equations for

i = 1, . . . , N and the i = N + 1 equation as follows

N∑
j=1

Mij(pj + δpj)−
k2

0

ε0

αiGi,N+1pN+1 = p0,i, (5.11)

pN+1 −
k2

0

ε0

N∑
j=1

αN+1GN+1,j(pj + δpj) = p0,N+1, (5.12)

where the j = N + 1 in the sums has been separated from the rest of the sum. Using Eq. (5.6),

Eq. (5.11) can be rearranged to yield

δpi =
N∑
j=1

M−1
ij

k2
0

ε0

αjGj,N+1pN+1, (5.13)
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where M−1
ij is here used to denote the (i, j)th 3× 3 block (corresponding to rows 3i− 2 to 3i and

columns 3j − 2 to 3j) of the inverse of the entire 3N × 3N matrix M , as opposed to (Mij)
−1,

the inverse of the 3× 3 sub-matrix Mij. Substituting Eq. (5.13) into Eq. (5.9) then gives

∆E(r) =
k2

0

ε0

G(r, rN+1)γ1(r)pN+1. (5.14)

where the enhancement factor γ1 has been introduced, defined by

γ1(r) = I +
k2

0

ε0

G(r, rN+1)−1

N∑
i,j=1

G(r, ri)M
−1
ij αjGj,N+1. (5.15)

Expressing ∆E in this forms allows for comparison with the single scattering result in Eq. (5.10).

Specifically, it is evident that the perturbation to the dipole moments of the N initial scatterers

from introduction of an additional scatterer is described by the factor γ1. The coupling of dipoles

arising from multiple scattering acts to modify the effective dipole moment of the additional

scatterer such that pN+1 → γ1(r)pN+1. The tensor nature of γ1 reflects the fact that the

polarisation of the field perturbation can be modified by multiple scattering. Similarly, γ1 is a

complex quantity, implying multiple scattering can affect both the phase and amplitude of ∆E.

Not all multiple scattering effects are captured in γ1 however. In addition to the additional

scatterer perturbing the other dipole moments, the local field experienced by the additional

scatterer contains a contribution from scattering of the illumination field by the N initial

scatterers, in addition to the contribution from the illumination field on the particle. Substituting

Eqs. (5.13) and (5.6) into Eq. (5.12) results in

pN+1 = p0,N+1 +
k2

0

ε0

N∑
i,j=1

αN+1GN+1,iM
−1
ij p0,j

+

(
k2

0

ε0

)2 N∑
i,j=1

αN+1GN+1,iM
−1
ij αjGj,N+1pN+1. (5.16)
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Rearranging for pN+1 yields

pN+1 =

[
I−
(
k2

0

ε0

)2 N∑
i,j=1

αN+1GN+1,iM
−1
ij αjGj,N+1

]−1

×

[
p0,N+1 +

k2
0

ε0

N∑
i,j=1

αN+1GN+1,iM
−1
ij p0,j

]
. (5.17)

By defining two further enhancement factors, ∆E can be expressed as

∆E(r) =
k2

0

ε0

G(r, rN+1)γ1γ2γ3p0,N+1, (5.18)

where

γ2 =

[
I−
(
k2

0

ε0

)2 N∑
i,j=1

αN+1GN+1,iM
−1
ij αjGj,N+1

]−1

(5.19)

γ3 = I +
k2

0

ε0

N∑
i,j=1

αN+1GN+1,iM
−1
ij

p0,jp
†
0,N+1

|p0,N+1|2
. (5.20)

Expressed in this way, the effect of multiple scattering is equivalent to changing the dipole

moment from p0,N+1 to γ1γ2γ3p0,N+1. In general, as with γ1, the enhancement factors γ2 and

γ3 are complex tensors, meaning multiple scattering can change the phase, amplitude and

polarisation of ∆E.

5.2.2 Physical Interpretation

Each enhancement factor can be associated with a class of multiple scattering paths involving

the additional scatterer as shown in Fig. 5.3. The various factors appearing in Eqs. (5.15),

(5.19) and (5.20) have simple physical interpations. A factor of Gij describes free propagation

from rj to ri (i.e. with no scattering in between), while αi describes scattering from the

ith scatterer. Finally, M−1
ij describes the sum of all scattering paths propagating from the

jth scatterer to the ith scatterer that do not include the additional scatterer. The reasoning

behind this interpretation of M−1
ij will become clear in Section 5.2.3. With these physical

interpretations of the various factors appearing in the enhancement factors, one can infer the
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Figure 5.3: Example multiple scattering paths for each enhancement factor: (γ1, left) rescattering of
light after scattering from the additional particle en route to the observation point, (γ2, center) loop
trajectories starting and ending on the additional scatterer and (γ3, right) multiple scattering of the
illumination field onto the analyte particle. Figure reprinted with permission from Ref. [287] © 2021
American Chemical Society.

scattering paths described by each. Firstly, γ1 describes the effect of rescattering of the field

as it propagates to the observation point r after being scattered by the additional scatterer.

The factor of αjGj,N+1 freely propagates the scattered field from rN+1 to a scattering event at

the jth scatterer, while M−1
ij propagates the field from the jth scatterer to the ith scatterer via

all possible scattering paths involving the initial N scatterers. Free propagation from the ith

scatterer to the observation point r is then described by G(r, ri). Secondly, γ2 describes the

effect of loop scattering paths in which the scattered light returns (possibly multiple times) to

the additional dipole via multiple scattering from the N initial dipoles. As in γ1, the factor of

M−1
ij αjGj,N+1 propagates the scattered field from the additional scatterer to the ith scatterer via

all possible scattering paths not including the additional scatterer. Following this, the field then

propagates the field back to the additional scatterer from which it is scattered again, represented

by a factor αN+1GN+1,i. completing the loop. Thus, the sum in Eq. (5.19) is a single loop factor

representing the contribution of all single loop paths. Summing over the number of loops yields

a geometric series in terms of the single loop factor, and hence γ2 can be expressed as a matrix

inverse of the form (I− single loop factor)−1. The loop contribution is a self-interaction effect

analogous to the surface dressing of polarisability discussed previously. Finally, γ3 accounts for

the effect of scattering of the incident field onto the additional scatterer. The incident field at

the jth scatterer (represented by the factor pi) is multiply scattered (by the initial N scatterers)

to the ith scatterer, described by M−1
ij , and then propagated to the additional scatterer at rN+1,
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as is described by the final factor of αN+1GN+1,i. The previously discussed hotspot mechanism

is described by this class of scattering paths [31, 298]. An immediate consequence of these

interpretations is seen in the αN+1 dependence of the factors. Since γ1 only includes scattering

after scattering from the additional particle, it has no dependence on αN+1. Similarly, for scalar

αN+1, the αN+1 factors cancel in Eq. (5.20), so that γ3 shows no dependence on αN+1. This is

because γ3 deals with scattering before the analyte particle, and thus does not depend on the

strength of scattering from the analyte particle. It does, however, depend on a tensor αN+1,

since an anisotropic additional scatterer results in different responses to different polarisations

of the scattered field. Finally, γ2 exhibits a dependence on αN+1 even if it is scalar, with

I− γ−1
2 ∝ αN+1. This is due to the fact it deals with scattering loops visiting the additional

scatterer, so intrinsically depends on its properties, in particular the strength with which it

scatters light.

The enhancement factors describe any and all multiple scattering effects within the coupled

dipole model, and apply generally to any sort of background media by appropriate choice of

Green’s tensor. In addition to this, the enhancement factors can also describe multiple scattering

of other waves, such as acoustic waves, with point scatterer models. The derivations of γ1,2,3

assumed a (3 dimensional) vector field, however, the results hold equally for waves which can be

described by a scalar model, with replacement of quantities with their scalar equivalent (e.g.

G is a scalar Green’s function, E becomes a scalar field, M is an N × N matrix with scalar

elements Mij and M−1
ij is the (i, j) scalar element of M−1, so that γ1,2,3 are complex scalars,

rather than tensors).

The interpretation of γ1,2,3 as enhancement factors is perhaps seen most intuitively in the

scalar version. Here, the magnitude of the field perturbation, relative to the single scattering

perturbation is |δE/δEss| = |γ1γ2γ3|, and thus the magnitudes of each factor gives the enhance-

ment to the field sensitivity SE arising from corresponding set of scattering paths. The phases

give the phase shift due to multiple scattering. In the full vector case, |∆E|/|∆Ess| can be

at least bounded through ‖G(r, rN+1)γ1γ2γ3G(r, rN+1)
−1‖ ≤ κG‖γ1γ2γ3‖ ≤ κG‖γ1‖‖γ2‖‖γ3‖

where κG is the condition number of G(r, rN+1) given by the ratio of the maximal and minimal

singular values [351].
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For a given background environment, the enhancement factors are determined by the

scattering configuration before the addition of the analyte particle (αi and ri for i = 1, . . . , N)

and the polarisability and position of the added analyte particle (αN+1 and rN+1). While the

exact scattering configuration is unknown for a random sensing setup such as the one in Fig.

3.2, the statistics over an ensemble of random configurations can be studied. In order to get

an analytic description of the statistics, the inverse matrix M−1 must be expressed in a more

tractable way in terms of the known quantities

5.2.3 Born Expansion of Coupling Matrix

By expressing M = I− P , the Neumann series (I− P )−1 =
∑∞

l=0 P
k, valid when ‖P‖ < 1 for

any matrix norm, can be used to expand M−1
ij that appears in the enhancement factors as

M−1
ij = Iδij +

∞∑
k=1

P k
ij. (5.21)

As with M−1
ij , P k

ij denotes the (i, j) 3× 3 block (vector field) or scalar element (scalar field) of

the matrix P k, as opposed to (Pij)
k, the (i, j) element raised to the power k. The elements Pij

of P are given by

Pij =


0 i = j

k20
ε0
αiGij i 6= j

, (5.22)

from which the kth order term in the Neumann series can be found as

P k
ij =

(
k2

0

ε0

)k N∑
l1,l2,...,lk−1=1

lr+1 6=lr
l1 6=i
lk−1 6=j

αiGil1αl1Gl1l2αl2Gl2l3 . . . αlk−1
Glk−1j. (5.23)

The expansion of M−1, along with Eq. (5.23) makes clear the physical interpration of M−1
ij as

the sum over all scattering paths starting at the jth scatterer and ending at the ith scatterer.

The term P k
ij corresponds to the contribution from all paths visiting exactly k scatterers, where
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each factor of αGlrlr+1 propagates the field to the next scattering event. The lr+1 6= lr exclusion

arises because a scattering path does not visit the same scatterer consecutively (as the self

interaction is accounted for in the polarisabilities αr). Summing over all k then accounts for all

scattering paths. The expansion can be thought of as a discretised version of the Born or Dyson

series such as presented in Eq. (3.17), where instead of integration over a continuous scattering

potential, there is a sum over discrete point scatterers. The expansion of M−1 allows for the

enhancement factors to be expressed as products of Green’s functions, allowing the application

of diagrammatic methods.

5.2.4 Far Field Enhancement Factor

While γ2 and γ3 are independent of observation position r, γ1(r) is a function of r and thus can

be simplified when r is in the far field. Taking the Green’s tensors G(r, rN+1) and G(r, ri) from

Eq. (5.15) to be the far field form for a general thin film background, as given in Eq. (3.30),

and that all scatterers are above the thin film structure, γ1 simplifies to

γ1(k‖) = I +
k2

0

ε0

N∑
i,j=1

[
R±(zi, zN+1)e−ik‖·(ρi−ρN+1)e−ikz(zi−zN+1)M−1

ij αjGj,N+1

]
, (5.24)

where the change of argument from r to k‖ emphasises that this form of γ1 is considered in the

far field. The function R±(zi, zN+1) is defined through the equation

G∞(r, rN+1)−1G∞(r, ri) = R±(zi, zN+1)e−ik‖·(ρi−ρN+1)e−ikz ·(zi−zN+1), (5.25)

where the ± denotes whether r is above (+) or below (−) the thin film structure. Using Eq.

(3.30), R± can be simplified under certain assumptions. Firstly, when zN+1 = zi, R
±(zi, zN+1) =

I. Similarly, for observation points below the multilayer structure, R−(zi, zN+1) = I. The

remaining case, for observation points above the thin multilayer stack (i.e. on the same side

as the scatterers) at different heights, the relative phase shifts to the direct and reflected

components mean R+ depends on the heights non-trivially. In this case, using Eqs. (3.24),
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(3.25) and (3.30), one finds

R+(zi, zN+1) = H̃(k‖, zN+1)−1H̃(k‖, zi). (5.26)

where

H̃(k‖, zi) =
[
(1 + rs(k‖)e

2ikzzi)ês(k‖)ê
†
s(k‖) + êp+(k‖)ê

†
p+(k‖)Dp(k‖, zi)

]
, (5.27)

Dp(k‖, zi) is a diagonal matrix given by

D(k‖, zi) = I−


1 0 0

0 1 0

0 0 −1

 rp(k‖)e2ikzzi . (5.28)

Here, it can be seen how the different propagation phases of the direct and reflected light are

included. This form of R± is significantly more complicated, and most of the results in this

chapter will apply to cases where R± = I. Such an assumption is not too restrictive in the

context of the proposed sensing setup. Firstly, it applies to all observation points below the

multilayer stack, including the leakage ring. In addition, scatterers are located on or near the

upper surface, and thus can be well approximated as all lying at the same height. Also, in

a homogeneous background where the Green’s tensor is given by Eq. (3.20), R± = I for any

scatterer arrangement and far field observation position.

5.2.5 Plane Wave Illumination and Reciprocity

The forms of Eqs. (5.15) and (5.20) show similarities in the form of γ1 and γ3. As γ3 describes

the initial scattering before reaching the analyte particle, it is the only enhancement factor to

depend on E0. The relationship between γ1 and γ3 is made even clearer when E0 is a (lossless)

plane wave E0(r) = E0ξ̂ exp(ikincr), with spatially uniform polarisation ξ̂ and amplitude E0, so
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p0,j = αjAξ̂e
ikinc·rj , With this incident field, γ3 becomes

γ3 = I +
N∑

i,j=1

αN+1GN+1,iM
−1
ij e

ikinc·(rj−rN+1)αj ξ̂(αN+1ξ̂)†∣∣∣αN+1ξ̂
∣∣∣2 . (5.29)

In comparison to Eq. (5.24), these forms of γ1 and γ3 share an exponential factor ∼ exp{iq ·

(ri − rN+1)}, a Green’s tensor propagating from or to the analyte scatterer and M−1
ij . Further

simplification is possible assuming isotropic scatterers so that αi are all scalars, reducing Eq.

(5.29) to

γ3 = I +
N∑

i,j=1

GN+1,iM
−1
ij αje

ikinc·(rj−rN+1)ξ̂ξ̂†. (5.30)

Finally, assuming the initial scatterers are identical (αj = α for all j ≤ N), γ3 can be expressed

γ3 = I +
N∑

i,j=1

αGN+1,iM
−1
ij e

ikinc·(rj−rN+1)ξ̂ξ̂†

= I +
N∑

i,j=1

αGT
i,N+1(M−1

ji )T eikinc·(rj−rN+1)ξ̂ξ̂†

From Eq. (5.18), γ3 only acts on p0,N+1, which for isotropic scatterers is oriented in the direction

ξ̂. When operating on vectors of this orientation, the projection operator ξ̂ξ̂† is equivalent to

the identity and thus, when acting on vectors in this space, γ3 can be expressed

γ3 =

[
I +

N∑
i,j=1

αGT
i,N+1(M−1

ji )T eikinc·(rj−rN+1)

]
ξ̂ξ̂†

=

[
I +

N∑
i,j=1

eikinc·(rj−rN+1)M−1
ij αGi,N+1

]T
ξ̂ξ̂†. (5.31)

The term in brackets is identical to γ1(−kinc,‖) from Eq. (5.24), for the case R± = I. Thus,

up to the projection operator, γ3 is the transpose of γ1 in the far field. In the scalar case, the

transpose and projection operators drop out and γ3 = γ1(−kinc,‖). This symmetry arises due to

the reciprocal symmetry of scattering paths in γ1 and γ3. Scattering paths involved in γ1 have

a reciprocal scattering path visiting the same scatterers in reverse order. The contribution of

such paths to the enhancement factor is identical up to the outgoing propagation to r in the

142



CHAPTER 5. ROLE OF MULTIPLE SCATTERING IN SENSITIVITY

case of γ1 as compared to the incoming propagation to rN+1 for γ3. Because of the reciprocal

symmetry, the scattering of the incoming plane wave to rN+1 gives an identical enhancement

to scattering from rN+1 into an outgoing plane wave −kinc, hence the relation of Eq. (5.31).

Relaxing the assumptions (identical, isotropic scatterers and lossless plane wave illumination)

results in Eq. (5.31) breaking down, though the relationship between reciprocal scattering

paths still has consequences with regards to the relationship between γ1 and γ3, which will be

discussed later.

5.2.6 Intensity Sensitivity Enhancement

The enhancement factors γi give the enhancement in the field perturbation, but as discussed in

Chapter 2, any experimental method would rely on measurement of intensities. Just as in the

single scattering analysis (see Eq. (3.85)), the intensity perturbation ∆I contains an interference

between the field perturbation and the background field as follows

∆I(r) = |∆E(r)|2 + 2 Re [∆E(r) ·E∗(r)] . (5.32)

While similar to Eq. (3.85), this result differs in that the interference is not with the field

scattered from the analyte particle, but with the full perturbation ∆E including multiple

scattering via the enhancement factors. The interferometric enhancement discussed in the

context of single scattering applies equally here, however it is not a multiple scattering effect.

Since the enhancement factors are complex, the phase of ∆E is changed by multiple scattering,

however, the phase difference between E and ∆E is random in both the single and multiple

scattering regimes, meaning that the phase statistics of the interference term are essentially

unchanged by the degree of multiple scattering. The primary difference in the statistics of the

interference term between single and multiple scattering lies in the different amplitudes |∆E|,

captured by ‖γ1γ2γ3‖.
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5.3 Analytic Results

In order to analytically calculate statistical properties of the enhancement factors, one must

define the statistics of the scattering configuration. It is assumed that the N initial scatterers are

identical and have the same orientation relative to the surface, implying αi = α for i ≤ N . Note

that α is still allowed to be a tensor. Furthermore, the transverse positions ρi of these scatterers

are assumed to be independently randomly distributed with uniform probability across a 2D

planar region of area L2 (L� λ0) on the surface of a substrate, with the same height zi = zs

for i ≤ N . This model is more appropriate for a nanostructured surface with discrete scatterers

randomly positioned on the surface of the multilayer stack, as opposed to a modelling scattering

from continuous surface roughness. The properties (αN+1 and rN+1) of the added scatterer are

not restricted and may be different to the background scatterers. It will also be convenient to

denote the sums appearing in Eqs. (5.15), (5.19) and (5.20) such that

γ1 = I + S1 (5.33)

γ2 = (I− S2)−1 (5.34)

γ3 = I + S3, (5.35)

and therefore the sums, taking the observation position in the far field, are given by

S1(k‖) =
k2

0

ε0

N∑
i,j=1

[
R±(zi, zN+1)e−ik‖·(ρi−ρN+1)e−ikz(zi−zN+1)M−1

ij αjGj,N+1

]
(5.36)

S2 =

(
k2

0

ε0

)2 N∑
i,j=1

αN+1GN+1,iM
−1
ij αjGj,N+1 (5.37)

S3(E0) =
k2

0

ε0

N∑
i,j=1

αN+1GN+1,iM
−1
ij

p0,jp
†
0,N+1

|p0,N+1|2
. (5.38)

To calculate the mean values 〈S1,2,3〉, it is helpful to introduce a Fourier decomposition of the

sums. Expressing the Green’s tensors using Eq. (3.29) and also expressing the incident field as
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an inverse Fourier transform (of the form of Eq. (3.21)), the sums can be expressed as

S1(k‖) =
k2

0

ε0

∫
d2q

(2π)2
R±(zs, zN+1)A(k‖, q)αG̃(q; zs, zN+1)eikz(k‖)(zs−zN+1) (5.39)

S2 =

(
k2

0

ε0

)2 ∫
d2q

(2π)2

d2q′

(2π)2
αN+1G̃(q; zN+1, zs)A(q, q′)αG̃(q′; zs, zN+1) (5.40)

S3(E0) =
k2

0

ε0

∫
d2q

(2π)2

d2q′

(2π)2
αN+1G̃(q; zN+1, zs)A(q, q′)αẼ0(q2; zs)e

iq′·ρN+1
p†0,N+1

|p0,N+1|2
, (5.41)

where the function A(q, q′) has been introduced, defined by

A(q, q′) =
N∑

i,j=1

e−iq·(ρi−ρN+1)M−1
ij e

iq′·(ρj−ρN+1). (5.42)

The dependence of Eqs. (5.39)–(5.41) on the random transverse positions ρi, and therefore the

statistics, is entirely contained within A. Substituting the Born expansion from Eq. (5.21) into

Eq. (5.42) results in

A(q, q′) =
∞∑
p=0

A(p)(q, q′) (5.43)

A(p)(q, q′) =

(
k2

0

ε0

)p ∑
i,j,l1,l2,
...,lp−1

e−iq·(ρi−ρN+1)αGil1αGl1l2αGl2l3 . . . αGlrlr+1 . . . αGlp−1je
iq′·(ρj−ρN+1),

(5.44)

where A(p) is the term containing the pth order term from the Born expansion and the limits

and exclusions (i.e. that the scattering path cannot visit the same scatterer consecutively) from

the sums in Eq. (5.44) are left implicit. Substituting the Green’s tensors in Eq. (5.44) with its

Fourier decomposition from Eq. (3.29) allows the dependence on the scatterer positions to be

included within an exponential factor as follows

A(p)(q, q′) =

∫ p∏
b=1

d2qb
(2π)2

k2
0

ε0

αG̃(qb; zs, zs)

×
∑

i,j,l1,...,lp−1

e−iq·(ρi−ρN+1)eiq1·(ρi−ρl1 )eiq2·(ρl1−ρl2 ) . . . eiqp·(ρlp−1
−ρj)eiq

′·(ρj−ρN+1). (5.45)
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The dependence on the random ρi in Eq. (5.45) is contained only in the exponential factors.

Regrouping the exponents so that each rli term is in the same exponent allows the sum to be

rewritten as

∑
i,j,l1,...,lp−1

ei(q1−q)·ρiei(q2−q1)·ρl1 . . . ei(qc+1−qc)·ρlc . . . ei(q
′−qp)·ρjei(q−q

′)·ρN+1 . (5.46)

In order to find 〈A(p)〉 (angled brackets here denoting averaging over the positions ρj of the N

initial scatterers), one only has to find the average of this sum of exponential factors. Since the

probability distribution of ρj is uniform across the 2D planar region A, any average is found

simply by integration over this region, 〈f(ρj)〉 =
∫
ρj∈A f(ρj)d

2ρj/L
2. The mean of a complex

exponential function can be calculated to be

〈eiq·ρj〉 =
4

L2

sin(qxLx)

qx

sin(qyLy)

qy
(5.47)

where the A has been assumed to be rectangular of sides Lx and Ly and qx and qy are the

components of q. Since Eq. (5.46) involves the sum over scatterers, it is important to consider

the average of a sum over scatterers

〈
N∑
j=1

eiq·ρj

〉
=

4N

L2

sin(qxLx)

qx

sin(qyLy)

qy

= 4n
sin(qxLx)

qx

sin(qyLy)

qy
. (5.48)

The 2D scatterer density n = N/L2 has been defined. In the limit N →∞ and Lx,y →∞ with

n fixed, Eq. (5.48) becomes

〈
N∑
j=1

eiq·ρj

〉
= n(2π)2δ(qx)δ(qy) = n(2π)2δ(q). (5.49)

This limit is the one that shall be used in this analysis, owing in part to its analytic simplicity

but also it is wide applicability, since generally strong multiple scattering requires a large number

of scatterers, and the illuminated region is typically significantly larger than the wavelength,
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so that L → ∞ is valid. While Eq. (5.46) is a sum over exponential factors, one cannot

directly apply Eq. (5.49) to each exponential factor, since some of the terms in the sum have

the indices taking the same value, i.e. lr = lc, so that the two exponential factors are not

statistically independent and need to be averaged together. Recalling the interpretation of the

Born expansion as a sum over scattering paths, terms where a scatterer position appears in two

different exponents correspond to loop paths visiting the same scatterer twice. Scattering paths

can have multiple loops or visit the same scatterer any number of times. Accounting for all the

different possible paths with repeated scatterers is difficult, and, following an approach similar

to Ref. [349], it is convenient to group the different terms into how many repeated scatterer

positions occur. Firstly, consider only terms with no repeated scatterers, meaning each li is

distinct. For such terms, each exponential ei(qc+1−qc)·ρlc can be averaged independently from the

rest as ρlc 6= ρlr for lc 6= lr. Since there are p+ 1 distinct scatterers appearing in such terms, the

sum in Eq. (5.46) contains N(N − 1)(N − 2) . . . (N − p)) ≈ Np+1 such terms with no repeated

scatterers. Averaging over the p+ 1 different scatterer positions gives a factor of (L2)−(p+1), so

that the contribution of these distinct scatterer terms to the mean of Eq. (5.46) scales as np+1.

Taking the next class of scattering paths with a single repeated scatterer (corresponding to

scattering paths with a single loop to revisit the scatterer), these paths visit p distinct scatterers

(as the order p term contains p+ 1 scatterering events, but two are from the same scatterer).

Choosing p scatterers out of N options gives N(N − 1) . . . (N − (p− 1)) ∼ Np such terms in the

mean of Eq. (5.46), while averaging over the p scatterer positions give (L2)−p. Thus, the one

loop terms scale as np. Applying the same logic to any number of repeated scatterers, it can

be deduced that the contribution of terms with r repeated scatterers to the mean of Eq. (5.46)

scales as np+1−r. Ignoring loops and taking only the highest order contribution in n (i.e. the

no repeated scatterers terms) allows the mean of Eq. (5.46) to be analytically calculated by

applying Eq. (5.49) to each ρlc separately, resulting in

np+1(2π)2δ(q1−q)(2π)2δ(q2−q1)(2π)2δ(q3−q2) . . . (2π)2δ(qc+1−qc) . . . (2π)2δ(q′−qp)ei(q−q
′)·ρN+1 .

(5.50)
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Substituting this averaged result into the mean of Eq. (5.45) then gives

〈A(p)(q, q′)〉 ≈ np+1

[
k2

0

ε0

αG̃(q; zs, zs)

]p
(2π)2δ(q − q′). (5.51)

where the delta functions restricts qb = q = q′ for every integration variable qb. Using Eq.

(5.43), summing over p gives the no loop approximation result for 〈A〉 as

〈A(q, q′)〉 ≈ n(2π)2δ(q − q′)
[
I− nk

2
0

ε0

αG̃(q; zs, zs)

]−1

. (5.52)

The means of Eqs. (5.39)–(5.41) follow from substitution of Eq. (5.52) and are

〈S1(k‖)〉 = R±(zs, zN+1)

[
I− nk

2
0

ε0

αG̃(k‖; zs, zs)

]−1

nα
k2

0

ε0

G̃(k‖; zs, zN+1)eikz(k‖)(zs−zN+1) (5.53)

〈S2〉 = n

(
k2

0

ε0

)2 ∫
d2q

(2π)2
αN+1G̃(q; zN+1, zs)

[
I− nk

2
0

ε0

αG̃(q; zs, zs)

]−1

αG̃(q; zs, zN+1)

(5.54)

〈S3(E0)〉 = n
k2

0

ε0

∫
d2q

(2π)2
αN+1G̃(q; zN+1, zs)

[
I− nk

2
0

ε0

αG̃(q, zs, zs)

]−1

× αẼ0(q; zs)e
iq·ρN+1

p†0,N+1

|p0,N+1|2
. (5.55)

While 〈γ1〉 and 〈γ3〉 follow simply from addition of the identity matrix, 〈γ2〉 does not follow

from 〈S2〉.

The derivation of Eqs. (5.53)–(5.55) made no assumptions on E0 and analyte scatterer

position rN+1, but it is informative to consider a couple of special cases. Firstly, the case when

E0(r) = E0(z)ξ̂ exp
(
ikinc,‖ρ

)
is a lossless plane wave simplifies 〈S3〉. Note that, by allowing a

z-dependent amplitude E0(z), one can account for a single transmitted plane wave (E0(z) =

E0 exp(ikinc,zz) or the sum of a plane wave and a reflected wave (E0(z) = E0[exp(−ikinc,zz) +

r(kinc,‖) exp(ikinc,zz)] with appropriate choice of reflection coefficient). The transverse Fourier

transform of this plane wave form of E0 is Ẽ0(q; zs) = E0(z)ξ̂(2π)2δ(q − kinc,‖), which reduces
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Eq. (5.55) to

〈S3(kinc,‖)〉 = n
k2

0

ε0

αN+1G̃(q; zN+1, zs)

[
I− nk

2
0

ε0

αG̃(kinc,‖, zs, zs)

]−1 E0(zs)

E0(zN+1)

(αξ̂)(αN+1ξ̂)†∣∣∣αN+1ξ̂
∣∣∣2 .

(5.56)

This form bears close resemblance to 〈S1〉, due to the reciprocal symmetry discussed in Section

5.2.5. Another informative case is when the analyte particle is at the same height as the initial

scatterers zN+1 = zs. In the context of the sensing setup, since the SPP field decays rapidly

away from the surface, scattering only occurs close to the surface and thus zN+1 = zs can

approximately describe most situations where the analyte particle scatters light sufficiently.

With zN+1 = zs, Eq. (5.53) becomes

〈S1(k‖)〉 =

[
I− nk

2
0

ε0

αG̃(k‖; zs, zs)

]−1

nα
k2

0

ε0

G̃(k‖; zs, zs) (5.57)

Using the matrix push through identity [352], (I−X)−1 = I + (I−X)−1X, 〈γ1〉 is therefore

〈γ1〉 =

[
I− nk

2
0

ε0

αG̃(k‖; zs, zs)

]−1

. (5.58)

This simple form of 〈γ1〉 has some significant consequences. Specifically, 〈γ1〉 diverges when

I−n(k2
0/ε0)αG̃(k‖; zs, zs) is singular, or in the scalar case, when n(k2

0/ε0)αG̃(k‖; zs, zs) = 1. Fur-

thermore, when the divergence condition is almost satisfied (i.e. det
[
I− n(k2

0/ε0)αG̃(k‖; zs, zs)
]

is close to zero), 〈γ1〉 will become very large, suggesting large multiple scattering enhancements.

As a result, under these conditions, it can be concluded that the multiple scattering regime is

significantly more sensitive to the addition of a scatterer than the single scattering regime. In the

scalar case, the density (for a given α) at which this occurs can be calculated analytically. It can

be shown |〈γ1〉| has a maximum value |〈γ1〉|max > 1 provided Re[αG̃(k‖; zs, zs] > 0, occurring at
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a density nopt,1, where

nopt,1 =
Re
[
αG̃(k‖; zs, zs)

]
k20
ε0

∣∣∣αG̃(k‖; zs, zs)
∣∣∣2 (5.59)

|〈γ1〉|max =

∣∣∣αG̃(k‖; zs, zs)
∣∣∣

Im
[
αG̃(k‖; zs, zs)

] . (5.60)

Already, this allows as to say a few things about how the scattering parameters affect the

sensitivity enhancements. Firstly, the presence of an optimum scatterer density suggests that the

enhancement is not monotonic, and that increasing the level of multiple scattering can reduce

sensitivity beyond a certain point. Furthermore, the properties of the individual scatterers (i.e.

α) also affect the statistics, as can be seen through the α dependence. In particular, depending

on the value of α, the behaviour can range from having no optimum density and |〈γ1〉|max < 1

regardless of density (when Re[αG̃(k‖; zs, zs] < 0) right through to the mean diverging to ∞

(under the approximations made) when Im
[
αG̃(k‖; zs, zs)

]
= 0. It is important to understand

these features in designing a sensing environment where it is desirable to maximise the sensitivity,

since it implies one can tune the scatterer density and composition to achieve this increased

sensitivity.

5.3.1 Mean Amplitude of Enhancement Factors

While the complex means capture some of the statistics, it does not give an idea of the

typical magnitude of the enhancement factors. This is because cancellation of large realisations

of γi with differing phases can lead to a comparatively small value of 〈γi〉. A more useful

indication of the typical magnitude of the enhancement is 〈|γi|〉. An approximate analytic

result for γ1(k‖) can be calculated in the scalar case, for which γ1 = 1 +
∑N

i=1Ri with

Ri = (k2
0/ε0) exp[−ikout · (ri − rN+1)]

∑N
j=1M

−1
ij αGj,N+1. Under the assumption that the phase

of Ri is uniformly distributed over the full 2π range and independent of the amplitudes |Ri|,

along with the further assumption that N is large, such that the central limit theorem can be

applied, it then follows that the phasor sum S1 =
∑N

i=1Ri is a zero mean complex circular
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Gaussian random variable with variance σ2
1 = N〈|Ri|2〉/2 as discussed in Chapter 3 [21]. It is

clear from Eq. (5.53) that 〈S1〉 6= 0 and therefore the assumptions on the phase and amplitude

statistics do not hold exactly (as they would imply 〈S1〉 = 0). The consequences of approximating

the phase and amplitude statistics in this manner will be assessed later. Given the assumption

of a zero mean circular Gaussian distribution on S1, it follows that the PDF of γ1 is a Gaussian

with mean of 1 (rotationally symmetric about the mean) and the same standard deviation.

The amplitude |γ1| thus follows a Rician distribution, from which the mean amplitude can be

calculated using [21]

〈|γ1|〉 = σ1,3(π/2)1/2L1/2(−1/(2σ2
1,3)) (5.61)

where L1/2(x) is a generalised Laguerre polynomial. All that remains to calculate 〈|γ1|〉 is to

calculate σ1, which can be done using the framework of diagrammatic methods.

Averaged Perturbed Green’s Function

Before calculating σ1 explicitly, a useful intermediate quantity to calculate is the mean exciting

Green’s function 〈Gsc(r, r′)〉, where the quantity Gsc has been defined as

Gsc(ri, r
′) =

N∑
j=1

M−1
ij αG(rj, r

′). (5.62)

Physically, this corresponds to the solution for pi when the incident field is taken as the

unperturbed Green’s tensor E0(r) = G(r, r′), and therefore is closely related to the Green’s

tensor for the scattering system including the initial N scatterers, G(N), which would be given

by putting pi = Gsc(ri, r
′) into Eq. (5.2), resulting in

G(N)(r, r′) = G(r, r′) +
N∑
i=1

G(r, ri)G
sc(ri, r

′). (5.63)
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The utility of Gsc in the context of calculating σ2
1 = N〈|Ri|2〉/2 is that the sum elements Ri

can be written in terms of the perturbed exciting Green’s function as

Ri = e−ikout·(ri−rN+1)Gsc(ri, rN+1). (5.64)

Expanding M−1
ij with Eq. (5.21) as was done for the enhancement factor gives

Gsc(r, r′) =
∞∑
k=0

(
k2

0

ε0

)k+1 ∑
l1,...,lk

αG(r, rl1)αGl1l2αGl2l3 . . . αGlk−2lk−1
αGlk−1lkαG(rlk , r

′). (5.65)

This form of Gsc bears close resemblance to Eq. (5.44), and the same approach as was used

to calculate 〈A(q, q′)〉 can be applied here. Using the inverse Fourier transform of G as before

results in

Gsc(r, r′) =
∞∑
k=0

(
k2

0

ε0

)k+1 ∫ k+1∏
b=1

d2qb
(2π)2

αG̃(qb; zs, zs)e
i(q1·ρ−qk+1·ρ′) (5.66)

×
∑
l1,...,lk

ei(q2−q1)·ρl1ei(q3−q2)·ρl2ei(q4−q3)·ρl3 . . . ei(qk−qk−1)·ρlk−1ei(qk+1−qk)·ρlk . (5.67)

Applying the same no loop approximation as used in deriving Eq. (5.50) to the exponential

sum, the mean of Eq. (5.66) is

〈Gsc(r, r′)〉 =

∫ [
1− nαk

2
0

ε0

G̃(q; zs, zs)

]−1

α
k2

0

ε0

G̃(q)eiq·(ρ−ρ
′) d

2q

(2π)2
(5.68)

〈G̃sc(q; zs, zs)〉 =

[
1− nαk

2
0

ε0

G̃(q; zs, zs)

]−1

α
k2

0

ε0

G̃(q; zs, zs). (5.69)

Physically, 〈Gsc(r, r′)〉 describes propagation via all possible scattering paths from r′ to r

averaged over the scatterer positions. This turns out to be a valuable quantity in calculating σ1.
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Figure 5.4: Diagrammatic representations of some examples of the interference of scattering paths
LiL∗j contributing to σ2

1. Dotted lines with a forward arrow represent a factor of G (freely) propagating
the field between two scatterers, while those with a backward arrow represent G∗ in the conjugated
path. Intermediate scatterer positions are integrated over upon averaging. Dashed lines show shared
scatterers between the two paths In the left example, the paths share no scatterers and are therefore
statistically independent. For these paths 〈LiLj〉 = 〈Li〉〈Lj〉 and there contribution is included in
|〈Gsc〉|2. The other two paths share scatterers and therefore are not accounted for in the Drude-
Boltzmann approximation.

Ladder Approximation

The calculation of σ1 involves considering the average of the interference between all scattering

paths from the N + 1th scatterer to the ith scatterer, given by

σ2
1 =

N

2
〈RiR∗i 〉

=
n

2

∫
〈Gsc(ri, rN+1)Gsc∗(ri, rN+1)〉d2ρi (5.70)

where the integral over ρi comes from averaging over the ith scatterer’s position. One can-

not directly insert Eq. (5.68) here, since 〈|Gsc(ri, rN+1)|2〉 6= |〈Gsc(ri, rN+1)〉|2 (though this

approximation is used in some contexts and is sometimes referred to as the Drude-Boltzmann

approximation [24]). Since Gsc contains all scattering paths between the start and end point, the

averaged product can be thought of as
∑

i,j∈paths〈LiL∗j〉 where Li is the contribution to Gsc from

one scattering path. A given scattering path visits a certain subset of scatterers. In the product

〈LiL∗j〉, any scatterers visited in Li but not in Lj can be averaged over independently from L∗j

and vice versa for scatterers appearing in L∗j but not in Li. Fig. 5.4 demonstrates diagrammatic

representations of some examples of these paths with shared and non-shared scatterers. In this

coupled dipole model, nodes corresponding to scattering events introduce a factor of αk2
0/ε0,

and intermediate scatterer positions are summed over (since any of the N scatterers can be

responsible for the scattering event) and integrated over (from averaging over position) so a node

introduces
∑

i

∫
αik

2
0/ε0d

2ρi/L
2. The connecting lines are Green’s functions as usual in diagram-

matic scattering theory. The contribution to 〈Gsc(ri, rN+1)Gsc∗(ri, rN+1)〉 from interference of

153



CHAPTER 5. ROLE OF MULTIPLE SCATTERING IN SENSITIVITY

X

rj ri

Y X

rj ri

Y X

rj ri

Y X

rj ri

Y

+ + + . . . =

Figure 5.5: Diagrammatic representation of how the use of Gsc, represented by a solid line with a
forward arrow (backward arrow denotes Gsc∗) to propagate between scatterers accounts for averaging
over all scatterer positions not appearing in both Li and Lj . Intermediate scatterer positions are not
labelled, but are integrated over. Replacing a dotted unperturbed Green’s function line that connects
one part of a diagram (represented by X in the figure) with the rest of the diagram (represented by
Y) with a solid line representing Gsc in a diagram accounts for the whole set of diagrams visiting
intermediate scatterers between X and Y, provided those intermediate scatterers do not appear in the
rest of the diagram (i.e. in X and Y). As such, connecting scattering events with solid lines and using
Gsc, one only needs to consider shared scatterers between two paths.

paths with no shared scatterers is contained within 〈Gsc(ri, rN+1)〉〈Gsc∗(ri, rN+1)〉. By using

Gsc(ra, rb) to propagate between the shared scatterers a and b in both Li and Lj rather than

G(ra, rb), one accounts for all possible scattering between the shared scatterers. This principle

is illustrated by the diagrams of Fig. 5.5. This allows the average 〈Gsc(ri, rN+1)Gsc∗(ri, rN+1)〉

to be represented by a sum over all interferences between paths where every scatterer is shared,

with diagrammatic representation of some examples of these terms shown in Fig. 5.6. There

still remain a large variety of different diagrams and summing all of them remains challenging.

In the case when the scattering mean free path is sufficiently large that the phase is randomised

between scattering events, i.e. kSPPls � 1, it is possible to ignore certain diagrams. Two

paths which visit the shared scatterers in a different order will have a random phase difference

owing the phase randomisation between scattering events and thus the net contribution from

these paths will tend to average out. This leaves only the contribution from the interference of

paths visiting the shared scatterers in the same order, and those visiting the same scatterers in

reverse order. Taking only the first class of diagrams that visit the scatterers in the same order,

rN+1

rs2

rs1

rs1

rs2

ri rN+1

rs2

rs2

rs1

rs1

ri rN+1

rs1

rs1

rs3

rs2

rs2

rs3

ri

rN+1

rs1

rs1

rs4

rs2

rs3

rs3

rs2

rs4
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Figure 5.6: Examples of different kinds of path interferences contributing to σ2
1, where every scatterer

appears in the both paths.
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Figure 5.7: The first four ladder diagrams which give rise to Eq. (5.71). Solid lines with a forward
arrow represent Gsc while backwards arrows denote Gsc∗, intermediate scatterer positions are integrated
over. Dashed lines connect shared scatterers.

represented diagrammatically in Fig 5.7, is known as the ladder approximation [24]. Within

this approximation, one finds

σ2
1 =

n

2

∫
〈Gsc(ri, rN+1)〉〈Gsc∗(ri, rN+1)〉d

2ρi
L2

+
n

2

∞∑
k=1

N∑
s1,...,sk=1

∫
|〈Gsc(ri, rs1)〉〈Gsc(rs1 , rs2)〉〈Gsc(rs2 , rs3)〉 . . . 〈Gsc(rsk , rN+1)〉|2

× d2ρi
L2

d2ρs1
L2

d2ρs2
L2

. . .
d2ρsk
L2

, (5.71)

where rsj are the shared scatterer positions being averaged over. The first term corresponds to

the interference of all paths with no shared scatterers (i.e. the Drude-Boltzmann contribution)

while each term in the sum over k is the contribution from the interference between paths Li

from Gsc visiting k scatterers s1, s2, . . . , sk and a conjugated path L∗j from Gsc∗ visiting the

same k scatterers in the same order. Introducing the Fourier space averaged Green’s function

G̃sc gives

σ2
1 =

n

2

∫ ∣∣∣〈G̃sc(q)〉
∣∣∣2 d2q

(2π)2

+
n

2

∞∑
k=1

N∑
s1,...,sk=1

∫
〈G̃sc(q1)〉〈G̃sc(q2)〉 . . . 〈G̃sc(qk)〉〈G̃∗sc(q′1)〉〈G̃∗sc(q′2)〉 . . . 〈G̃∗sc(q′k)〉

× ei(q1−q′1)·(ρi−ρs1 )ei(q2−q
′
2)·(ρs1−ρs2 ) . . . ei(qk−q

′
k)·(ρsk−ρN+1)d2ρi

d2ρs1
L2

d2ρs2
L2

. . .
d2ρsk
L2

× d2q1

(2π)2

d2q′1
(2π)2

d2q2

(2π)2

d2q′2
(2π)2

. . .
d2qk
(2π)2

d2q′k
(2π)2

. (5.72)
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Figure 5.8: The three lowest order examples of maximally crossed diagrams, which are responsible
for coherent back scattering and weak localisation effects.

Integrating over each position gives a factor (2π)2δ(qi − q′i)/L2, while the sum over scatterers∑
s1,...,sk

reduces to a factor of Nk. Therefore, Eq. (5.71) becomes

σ2
1 =

n

2

∫ ∣∣∣〈G̃sc(q)〉
∣∣∣2 d2q

(2π)2
+
n

2

∞∑
k=1

Nk

L2k

(∫ ∣∣∣〈G̃sc(q)〉
∣∣∣2 d2q

(2π)2

)k+1

=
1

2

nJ
1− nJ

, (5.73)

where the integral J =
∫ ∣∣∣〈G̃sc(q)〉

∣∣∣2d2q/(2π)2 has been defined and the geometric series in

nJ has been assumed to converge. The divergence when nJ = 1 is not physical, but arises

due to the approximations, and the ladder approximation breaks down as the scatterer density

approaches this divergence. The ladder approximation result ignores the interference between

exactly reversed paths, represented diagrammatically in Fig. 5.8. These maximally crossed

diagrams (also referred to as Cooperons) do not separate into separate integrals which can all

be summed like the ladder diagram, and no analytic contribution to σ1 from these diagrams has

been calculated (or any other class of diagrams) in this thesis. It is, however, worth considering

a few features of them to aid the discussion and physical understanding of results. Firstly, while

the reciprocity means the phase and amplitude acquired by the field is the same in the reversed

path sk → sk−1 → . . .→ s2 → s1 as in the path s1 → s2 → . . .→ sk−1 → sk, there is a phase

difference due to the difference in propagating from rN+1 to the first scatterer (at rs1 and rsk)

and from the last scatterer (at rsk and rs1) to ri. If the |ri − rN+1| is large, the dephasing

between the reciprocal paths in the incoming and outgoing legs means this contribution averages

out and can be ignored. When ri = rN+1, the contribution from the interference of a path

with its reciprocal path is exactly equal to the contribution of the interference of the path with

itself (i.e. the ladder diagram contribution). This means that 〈|Gsc(r, r)|2〉 is twice that of

the ladder approximation result. This result is analogous to coherent backscattering and is
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the simplest set of diagrams contributing to weak localisation. In calculating σ1, however, the

quantity required is
∫
〈|Gsc(r, rN+1)|2〉d2ρi, and thus, provided this coherent backscattering

peak around ρi ≈ ρN+1 is sufficiently narrow, the maximally crossed diagrams’ contribution to

σ1 is negligible compared to the ladder diagram contribution. Beyond the maximally crossed

diagrams, there are yet more contributions involving partially reversed scattering paths that, at

short mean free paths, can give rise to Anderson localisation. Anderson localisation would have

significant consequences for 〈|γ1|〉, as 〈|Gsc|2〉 is confined to decay over the localisation length ξ,

and thus the integral in Eq. (5.70) is effectively over a smaller area ∼ ξ2. While the contribution

of diagrams beyond the ladder approximation to 〈|γ1|〉 are not calculated analytically in this

thesis, they still play a role in the enhancement factor statistics.

A notable feature of Eq. (5.70) (and thus any analytic approximation to it such as the

ladder approximation) is that σ1 is independent of the observation wavevector k‖. This should

be contrasted with Eq. (5.53), which does depend on k‖. As a result, while the statistics of γ1

do depend on the observation point, the mean amplitude of this enhancement factor, when the

random phasor sum model applies, is independent of observation position.

Mean Amplitude of γ3

The analysis of the mean amplitude was applied to 〈|γ1|〉, however, it can also be applied to

γ3 in the scalar case, when the illuminating field is a plane wave. In this case, S3 =
∑N

j=1 Uj

with Uj = (k2
0/ε0) exp[ikin · (rj − rN+1)]

∑N
i=1 αGN+1,iM

−1
ij . Applying the same phasor sum

logic as in the γ1 case, the Rician mean of Eq. (5.61) applies but with σ2
3 = N〈|Ui|2〉/2

instead of σ1. Under the assumptions already made (i.e. identical scatterers at zi = zs)

M−1
ij αGj,N+1 = αGN+1,jM

−1
ji and therefore, analogous to Eq. (5.64), one has

Ui = eikin·(ri−rN+1)Gsc(rN+1, ri). (5.74)

Unlike Eq. (5.64) however, the presence of loss means kin ∈ C and therefore σ3 is given by

σ2
3 =

n

2

∫
〈Gsc(rN+1, ri)G

sc∗(rN+1, ri)〉e−2 Im[kin]xid2ρi, (5.75)
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where, without loss of generality, the xi-axis has been aligned parallel to kin. In the lossless case,

Im[kin] = 0 and therefore σ3 = σ1 and 〈|γ3|〉 = 〈|γ1|〉. More generally, when the incident field has

a position dependent amplitude A(r) and phase φ0(r), so E0,z = A(r)eiφ0(r), the distribution

width parameter is

σ2
3 =

n

2

∫
〈Gsc(rN+1, ri)G

sc∗(rN+1, ri)〉
∣∣∣∣ A(ρi, zs)

A(ρN+1, zs)

∣∣∣∣2d2ρi. (5.76)

5.4 Scalar SPP Scattering Results

The analytic results so far have been derived with relatively few assumptions about the back-

ground. In order to study the multiple scattering enhancements in more depth within an SPP

scattering context, it is important to introduce a explicit form for G. The Green’s tensor can be

split into contributions from different modes [213], including SPPs as

G(r, r′) = GSPP(r, r′) +Gs(r, r
′) +Gp(r, r

′) (5.77)

where GSPP is the contribution from SPP modes and Gs,p is the contribution from s- and

p- polarised plane wave modes. For a single metal-dielectric interface, the SPP contribution

has been calculated analytically above the surface (z, z′ > 0) in the limit of large transverse

separations |ρ− ρ′| � λ0 and small heights z, z′ � λ0 to be [213, 353, 354]

GSPP(r, r′) = iA0H
(1)
0 (kSPP|ρ− ρ′|)e−κd(z+z′)(ẑ − iaρ̂)(ẑ + iaρ̂)T (5.78)

where A0 = akSPP/[2(1− a4)(1− a2)], a = (εd/(−εm))1/2 and H
(1)
n (x) is the nth order Hankel

function of the first kind. In addition, for points close to the surface, SPP modes are dominant

and G ≈ GSPP [353]. Furthermore, while this form of GSPP has been derived for a single

metal-dielectric interface, the SPP modes take the same functional form in the z > 0 halfspace

even for more general multilayer structures (see Eq. (3.5)), and therefore GSPP takes the same

form as Eq. (5.78) for a more general layered structure, though the dependence of the parameters

A0, a, kSPP and κd on the physical parameters differs from the single interface case.
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Since the off diagonal ẑρ̂T and ρ̂ẑT terms in Eq. (5.78) are proportional to a (and the ρ̂ρ̂T

component scales as a2), in the limit |a| � 1, GSPP ∝ ẑẑT projects all sources onto their z

component. As a result, one only needs to consider the z components Ez and pz of the field

and dipole moments in the coupled dipole model. This allows the treatment of SPP scattering

within a scalar model [354, 355], and thus the scalar forms of γi can be used. The scalar Green’s

function follows from the ẑẑT component of Eq. (5.78) as

GSPP,scal(r, r
′) = iA0H

(1)
0 (kSPP|ρ− ρ′|)e−κd(z+z′). (5.79)

Within this scalar model, the scalar value of α appearing in the coupled dipole equations

and hence enhancement factors corresponds to αzz, such that pz = αzzEz. The model

allows for calculation of an elastic scattering cross-section σSPP = 4|µ|2/k′SPP, where µ =

αzz(k
2
0/ε0)A0 exp[−2κdzs] [354, 355]. From now on within the scalar model, αzz shall be referred

to simply as α. The transverse Fourier space scalar Green’s function follows from the Fourier

transform of Eq. (5.79) and is

G̃SPP,scal(q; z, z′) =
−4A0e

−κd(z+z′)

k2
SPP − q2

. (5.80)

With the scalar Green’s function, assuming zN+1 = zs and an incident (lossy) plane wave

E0,z(x, z) ∝ Θ(x) exp(ikSPPx− κdz), Eqs. (5.53)–(5.55) result in

〈γ1(k‖)〉 =
k2

SPP − k2
‖

k2
SPP − k2

‖ + 4nµ
(5.81)

〈γ3(xN+1)〉 = −
2nµ exp

[
i(k̃(n)− kSPP)xN+1

]
[
kSPP − k̃(n)

]
k̃(n)

(5.82)

〈S2〉 = −µN+1

π
log

(
1 +

4nµ

k2
SPP

)
(5.83)

where k̃(n) = (k2
SPP + 4nµ)1/2 has been defined and µN+1 is defined analogously with αN+1

replacing α. While Eq. (5.81) follows directly from the substitution of Eq. (5.80) into Eq.

(5.58), evaluation of the integrals in Eqs. (5.54) and (5.55) to arrive at Eqs (5.82) and (5.83) is
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slightly more involved and is presented in Appendix A. In addition, the scalar model allows use

of the scalar theory for 〈|γ1,3|〉. The perturbed (Fourier space) Green’s function is

G̃sc(q; zs, zs) =
−4µ

k2
SPP − q2 + 4nµ

. (5.84)

This result demonstrates that one effect of multiple scattering is to shift the effective wavevector

kSPP → k̃(n), as was discussed in Section 5.1.1. From Eq. (5.84), the width parameter σ1 can

be calculated by evaluating the integral

J =

∫
16|µ|2

(k2
SPP − q2 + 4nµ)(k∗2SPP − q2 + 4nµ∗)

d2q

(2π)2

=
4|µ|2

Im[k2
SPP + 4nµ]

=
σSPP

L−1
SPP + 4n Im[µ]/k′SPP

, (5.85)

resulting in

σ2
1 =

1

2

l−1
s

L−1
SPP + 4n Im[µ]/k′SPP − l−1

s

. (5.86)

From Eq. (5.86), 〈|γ1|〉 can be calculated via Eq. (5.61). Note that the divergence of this

result occurs when ls = Labs where Labs is an effective absorption length defined by L−1
abs =

L−1
SPP+4n Im[µ]/k′SPP, which accounts for absorption of the SPP in the metal substrate (described

by LSPP) and also absorption by the scatterers.

5.4.1 Numerical Results

In order to further understand the enhancement factor statistics, and to assess the validity of

the derived analytic results, numerical Monte Carlo simulations were performed using the scalar

SPP scattering model. A realisation of randomly distributed scatterers was generated and the

corresponding scattered field calculated by solving Eq. (5.6) with Gij calculated using Eq. (5.79).

The simulation was repeated with an additional particle from which the field perturbation and

individual enhancement factors could be calculated. The scatterer positions were randomly
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generated with a uniform distribution in a 2D box of sides L, while all scatterers (including

the additional one) were at the same height zs and had the same polarisability α. While the

simulations were performed with αN+1 = α for speed of computation, in a sensing context

generally αN+1 will be different and typically smaller due to being a small biological particle.

As described in Section 5.2.2, in the scalar case γ1 and γ3 are independent of the value of αN+1

while γ3 for any value of αN+1 for any given realisation can be calculated from the αN+1 = α

case using the scaling S2 ∝ αN+1. Thus, there is no need to perform simulations at different

values of αN+1. In order to vary the scatterer density n (and therefore the mean free path ls and

level of multiple scattering), L was varied. Unless otherwise stated, averages were calculated

from 50,000 realisations.

Low Loss Single Interface

The first set of simulations applies to a single gold-water interface at a free space wavelength

of 650nm. In this case εd = 1.77 and εm = −13.68 + 1.04i [280], meaning that kSPP =

(1.42 + 0.008i)k0 and LSPP = 9.9λ0. The number of scatterers was fixed at N = 700, while the

box size was varied between L = 9.3λ0 and L = 118λ0. Fig. 5.9 shows the complex means

and mean amplitudes of the enhancement factors as a function of density for an observation

point at 70◦ to the surface normal in the backward direction (k‖ = −ε1/2
d k0 sin(70◦)x̂) with an

incident plane wave SPP E0,z(x, z) = Θ(x) exp(ikSPPx− κdz) and assuming a polarisability αg1

corresponding to a gold sphere of radius Rg1 = 40nm sitting on the gold surface (i.e. zs = 40nm).

This polarisability was calculated using a quasistatic result with surface dressing included using

the electrostatic approximation to the Green’s tensor [354, 353] to give

αzz =
α0

1 + 2υβ
(5.87)

where υ = (εd− εm)(εp− εd)/[(εd + εm)(εp + 2εd)], β = (Rg1/(2zs))
3 and α0 is the homogeneous

space quasistatic result from Eq. (2.6). The additional scatterer was added at a position

rN+1 = (0, 0, zs). The analytic theory results of Eqs. (5.81) to (5.83) are also shown. These

results are a good description at lower scatterer density, before breaking down at shorter mean
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Figure 5.9: Complex means (a) 〈γ1〉, (b) 〈γ2〉, (c) 〈γ3〉 and (d) the mean amplitudes of the individual
enhancement factor 〈|γi|〉 and the total enhancement factor 〈|γ1γ2γ3|〉 for a gold-water interface at
λ0 = 650nm with 40nm gold sphere scatterers. Vertical dashed lines indicate densities used in Fig. 5.10.
Figure reprinted (with alteration) with permission from Ref.[288] © 2021 American Physical Society.

free paths ls ∼ 5λ0, at which point the loop paths ignored in the derivation become significant.

Note the mean free path shown in the plots is calculated via ls = (nσSPP)−1 and therefore

strictly only accurate at lower densities. The value of ls shown on the plots is intended only as

an alternative parameterisation to n.

Importantly, Fig. 5.9(d) shows the total amplitude enhancement can be as large as ∼ 102,

and that there is an optimum density at which this field amplitude enhancement is maximised.

More detailed understanding of the enhancement factor statistics is revealed in looking at the

probability distribution over the complex plane, shown in Fig. 5.10. While, as indicated by both

the analytical and numerical complex means, the centre of distributions for γ1 and γ3 migrate

from 1 to 0 with increasing density, the width of the distributions increases initially with density
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Figure 5.10: The relative frequency of γ1 (top row), γ2 (middle row) and γ3 (bottom row) over the
complex plane for scatterer densities nλ2

0 = 0.05 (left column), 0.67 (middle column) and 8.0 (right
column). Figure reprinted with permission from Ref. [288] © 2021 American Physical Society.

before shrinking beyond the optimum density. The width of the distribution is the primary

factor controlling 〈|γ1,3|〉, with the wide distribution at intermediate density giving rise to the

peak with large 〈|γ1γ2γ3|〉, while the relatively tight distributions at high and low density result

in small total amplitude enhancements 〈|γ1γ2γ3|〉 ∼ 1 and even < 1 at the highest simulated

densities, indicating that multiple scattering can reduce sensitivity at very high density. The

density range for which the probability distributions for γ1,3 have a large variance and mean

amplitude give rise to larger statistical fluctuations in the complex mean. As such, the results

plotted between nλ2
0 = 0.21 and 3.87 in Fig. 5.9 are averaged over 150,000 realisations in order

to improve convergence. The shape of the γ1,3 distributions appear to be close to rotationally

symmetric about their centre, demonstrated by Fig.5.11(a) and (b), which show the standard
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Figure 5.11: Plots showing, as a function of n, (a) the standard deviations σRe and σIm of the real
and imaginary parts of γ1,2,3, (b) the ratio σRe/σIm and (c) the Pearson correlation coefficient of
|γ1,2,3 − 〈γ1,2,3〉| and arg(γ1,2,3 − 〈γ1,2,3〉).

deviations of the real and imaginary parts of each enhancement factor and their ratios. The

real and imaginary standard deviations are generally very similar, with large discrepancies

attributable to outliers, since the convergence of the standard deviation is slower than that

of the mean. In addition, the correlation coefficients between |γi − 〈γi〉| and arg(γi − 〈γi〉),

shown in Fig. 5.11, are close to zero, which would be expected for a rotationally symmetric

distribution. Rotational symmetry is consistent with the phasor sum model used to derive Eq.

(5.70), which predicts a rotationally symmetric Gaussian distribution on the complex plane.

Conversely, γ2 has a more complicated distribution over the complex plane and is confined to

close to the real/imaginary axes, bearing some resemblance to the previously studied eigenvalue

distributions of Euclidean matrices arising in similar scattering studies [348]. Most significantly,

from a sensitivity viewpoint, the very large values of |γ2| occur with low probability so that

164



CHAPTER 5. ROLE OF MULTIPLE SCATTERING IN SENSITIVITY

Figure 5.12: Enhancement factor amplitude statistics for an incident field E0,z = exp(ikSPPx− κdz),
(a) the density dependence of 〈|γi|〉 and 〈|γ1γ2γ3|〉. The black line indicates the analytic ladder
approximation result for 〈|γ1|〉 from Eqs. (5.61) and (5.86), plotted up to the point it diverges. (b)
The relative frequency of a given total amplitude enhancement for a different scatterer densities.
The vertical dashed coloured lines in (a) indicate the densities plotted in (b). Figure reprinted (with
alteration) with permission from Ref. [287] © 2021 American Chemical Society.

〈|γ2|〉 remains close to 1 (as evidenced in Fig. 5.9(d)).

The density dependences of 〈|γ1|〉 and 〈|γ3|〉 are very similar, but they differ in that 〈|γ3|〉 is

notably lower. As indicated by Eq. (5.75), it is expected that in the lossless limit k′′SPP → 0,

〈|γ1|〉 = 〈|γ3|〉, but here, in addition to the exponential decay from loss, there is also the fact

the SPP is launched from x = 0 (captured in the presence of the Heaviside step function in the

incident field), and thus scatterers located at xi < 0 do not scatter the incident field. As a result,

in the limit k′′SPP → 0, σ3 = σ1/2 and 〈|γ3|〉 is reduced relative to 〈|γ1|〉. Fig. 5.12(a) shows the

equivalent of Fig. 5.9(d) in the absence of the step function (i.e. E0,z = exp(ikSPPx− κdz)).

In this case, 〈|γ3|〉 and 〈|γ1|〉 can be seen to be close, though the presence of loss does mean

they differ slightly, with 〈|γ3|〉 slightly larger. The maximum value of 〈|γ1γ2γ3|〉 is ∼ 367 at an

optimal density of nopt,tot = 0.49/λ2
0 (lopt,tot = 3.51λ0).

The ladder approximation provides a good description of 〈|γ1|〉 up to the point it diverges.

Beyond this point, the role of the interference of reciprocal paths, captured in more complicated

diagrams such as the ones shown in Fig. 5.8 becomes significant. While the breakdown

of the ladder approximation means there is no analytic result describing any of the mean

amplitudes 〈|γi|〉 beyond the density where nJ = 1, an understanding of the nature of the

ladder approximation and the diagrams ignored in making it helps provide an explanation of
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the density dependence of 〈|γ1,3|〉 and 〈|γ1γ2γ3|〉. At low densities, the ladder approximation

is valid, and 〈|γ1,3|〉 grows with density as the scatterers become closer together on average

and thus the amplitude of individual scattering paths increase due to the larger values of Gij

(which decays with scatterer separation as ∼ |ρi − ρj| −1/2 for large separations). At higher

densities, the interference of reciprocal paths becomes significant. As noted in the discussion of

Fig. 5.8, the maximally crossed diagram contribution to 〈|Gsc(r, rN+1)|2〉 is strongly peaked

around rN+1, and more generally these diagrams and others give rise to Anderson localisation

such that 〈|Gsc(r, rN+1)|2〉 decays over a length scale given by the Anderson localisation length

ξ. As a result, light scattered from the analyte particle is confined to a region within ∼ ξ of

rN+1, and thus only scatterers within this region contribute to |γ1|. Similarly, only scatterers

within ∼ ξ can scatter light onto the analyte particle and contribute to γ3. The reduced number

of scatterers around the analyte particle contributing to the enhancement factor results in a

smaller enhancement factor with increasing density. As a result, an optimum density exists

at which the average amplitude enhancement is maximised, before localisation effects begin

to reduce the enhancement. Using the result for the localisation length of a 2D system of

ξ = ls exp (πRe[kSPP]ls/2) [356], ξ becomes smaller than the system size for ls ≈ 0.73λ0 in these

simulations (remembering that ls is calculated using a low density result that may not be fully

accurate at higher densities). At the largest density, ls = 0.21λ0 which give ξ/L = 0.42, so that

only a fraction ∼ (ξ/L)2 ∼ 0.17 of scatterers receive intensity scattered from the additional

scatterer and similarly scatter intensity onto the additional scatterer.

The density histograms shown in Fig. 5.12(b) show that low densities give a distribution of

total amplitude enhancements tightly centred around ∼ 1. On the other hand, for n close to the

optimum value, the probability distribution exhibits a long tail. A given scattering configuration

at the optimum density nopt,tot consequently has a high probability of producing a significant

sensitivity enhancement, but it is important to point out that the total enhancement for a given

realisation with n ≈ nopt,tot will likely be smaller than the mean total enhancement (mode ≈

median � mean), though still typically of the order ∼ 100. Importantly, there is a small but

non-negligible probability of a very large enhancement even as high as ∼ 103. Such long tailed

distributions are seen in the context of LDOS enhancements by random media [357, 358], which
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Figure 5.13: The mean amplitudes (a) 〈|γ1|〉 and (b) 〈|γ1γ2γ3|〉 for various different observation
wavevectors k‖ = kd(sin θ cosφ, sin θ sinφ). Note that γ2,3 do not depend on observation position since
they only deal with scattering onto the analyte particle.

describe a similar concept of enhancement of power radiated by a dipole in inhomogeneous

environments. At the highest densities, the majority of realisations give |γ1γ2γ3| < 1, reducing

sensitivity, though the tail is still longer compared to the lower densities with comparable means.

Consequently, even though the mean enhancements for the two limiting cases are both of order

unity, for high scatterer density there exist a small number of configurations that produce an

appreciable sensitivity enhancement. In contrast, at low densities, different configurations do

not differ greatly in their effect on sensitivity.

The results discussed so far are for the arbitrarily chosen observation position at k‖ =

−ε1/2
d k0 sin(70◦)x̂. Fig. 5.13 shows mean amplitude 〈|γ1|〉 (the only observation position

dependent enhancement factor) and the total amplitude enhancement factor 〈|γ1γ2γ3|〉 for a

few different observation wavevectors k‖. Importantly, the mean amplitude shows only a weak

dependence, and generally only when the enhancement is small, i.e. when the width of the

distributions in the complex plane are small and thus the position of the centre of the distribution

(i.e. the complex mean) has a more important role in the mean amplitude. This matches with

the theoretical predictions of Section 5.3.1, with Eq. (5.70) giving no k‖ dependence of 〈|γ1|〉.

Fig. 5.14 shows the density dependence of the complex mean 〈γ1〉 for the same set of observation

positions. Here, there is some differences, most notably at high density. The movement of 〈γ1〉

from 1 at n = 0 towards 0 as n→∞ occurs regardless of k‖.

Additionally, the effect of α on the enhancement factor statistics should be considered.
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Figure 5.14: The complex mean 〈γ1〉 as a function of n for different observation positions (a) Re〈γ1〉
and (b) Im〈γ1〉.

The analytic results do predict a dependence on α, for both the complex mean and the mean

amplitude. Fig. 5.15 shows the equivalent of Fig. 5.9 with α = iαg1 phase shifted by π/2,

while similarly, Fig. 5.16 shows the equivalent of Fig. 5.12 for this phase shifted value of

α. The analytic results from Eqs. (5.81)–(5.82) still describe the complex means well at low

densities, while Eq. (5.86) describes 〈|γ1|〉 accurately up to the divergence. With this phase

shifted polarisability iαg1, the general behaviour is the same as with αg1, but the transition to

large mean amplitudes and wide distributions occurs at a higher density. As a result, the mean

amplitude enhancement is reduced at low densities compared to the results for αg1 in Fig. 5.12,

which can be attributed to the fact the new scatterer properties give rise to more absorption,

and therefore reduce both the amount of light incident on the analyte particle and the amount

of light reaching other scatterers after scattering from the analyte particle. At larger values of n,

however, the mean amplitudes in Fig. 5.16 behave similarly to those in Fig. 5.12, showcasing an

optimum density where the amplitude enhancement is maximised and a decay with increasing

density. The maximum sensitivity enhancement is smaller, though of similar magnitude (∼ 119)

and additionally it occurs at a higher density (nopt,tot = 2.31/λ2
0, ls = 0.74λ0) compared to the

α = αg1 case. The decay at higher densities, which has been attributed to localisation effects,

starts at a similar density and therefore large enhancements close to the peak value occur over

a narrower density range than the α = αg1. The analytic results for 〈γ1,3〉 provide an accurate

description up to much higher densities nλ2
0 ∼ 1 (ls ∼ 1.5λ0) compared to the αg1 case. While
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Figure 5.15: Equivalent of Fig. 5.9 but with α = iαg1.

the ladder approximation provides a good low density description of 〈|γ1|〉, 〈|γ3|〉 is significantly

reduced, due to the increased absorption from scatterers reducing the amount of scattered light

arriving at the analyte particle. The probability distributions (both the amplitude distribution

in Fig. 5.16(b) and the complex plane distributions shown in Fig. 5.17) behave as in the α = αg1

case, though the transitions between different regimes occur at different density, in particular the

transition to long tailed/high variance distribution requires a higher scatterer density. This set

of results is revealing in terms of sensor design. The existence of an optimum scatterer density

which maximises the mean amplitude implies the sensitivity of a sensor can be maximised by

tuning the density of scattering elements on a random nanostructured surface. Furthermore,

the properties of the individual scatterers (i.e. their polarisability α) affect the enhancement,

offering another parameter that can be tuned. Physically, α is not freely tunable, but can be

altered by tuning different properties of the scatterers, for example, variation of the material
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Figure 5.16: Equivalent of Fig. 5.12 showing but with α = iαg1. Histograms are plotted at different
densities to Fig. 5.12 since the transitions in distribution occur at different points. Figure reprinted
(with alteration) with permission from Ref. [287] © 2021 American Chemical Society.

composition or geometrical properties. In addition, the polarisability of resonant scatterers,

such as plasmonic nanoparticles exhibits a strong frequency dependence, so that tuning λ0 can

alter α. Additionally, introduction of an index matched spacer layer between the substrate and

background scatterers furthermore allows the height zs to be adjusted, which would alter the

value of µ and therefore tune the statistics.

High Loss Single Interface

The use of lossy media such as metals in plasmonic structures means absorption inevitably plays

an important role in SPP propagation, including in multiple scattering. The results discussed

already demonstrate that absorption by scatterers can significantly affect the enhancement factor

statistics. Additionally, absorption by the substrate plays a role, since Eqs. (5.81)–(5.83) and

(5.86) depend on LSPP. In order to further explore the role of absorption in the enhancement,

simulations were performed with increased absorption within the metal. Specifically, the gold-

water interface with λ0 = 600nm was considered, for which εm = −8.0 + 2.1i while εd is

unchanged. As a result kSPP = (1.49 + 0.05i)k0 and LSPP = 1.6λ0 is significantly shorter. The

complex means and mean amplitudes for E0,z = Θ(x) exp(ikSPPx− κdz) are shown in Fig. 5.18,

for which all scatterers were modelled as 21.5nm gold spheres sitting on the surface, giving a

polarisability αg2 calculated from Eq. (5.87). The observation position is k‖ = −ε1/2
d k0 sin(70◦)x̂

as in the ‘low loss’ case shown in Fig. 5.9. In this case, the box size L was varied between L = 8λ0
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Figure 5.17: Equivalent of Fig. 5.10 showing the histograms of the individual enhancement factors on
the complex plane but with α = iαg1. Densities plotted are (left) nλ2

0 = 0.05, (centre left) nλ2
0 = 0.67,

(centre right) nλ2
0 = 2.31 and (right) nλ2

0 = 8 which correspond to the same ones as in Fig. 5.10, with
the addition of n = nopt,tot = 2.31λ−2

0 to show the optimum density distribution is analogous to that
of Fig. 5.10.

and L = 30λ0. In contrast to the ‘low loss’ case, the analytic results (Eqs. (5.81) and (5.82))

match the numerically calculated 〈γ1,3〉 for the full density range. In addition, a significant

difference from the ‘low loss’ results is the absence of the peak in the mean amplitudes, both for

the individual enhancement factors and the total mean amplitude enhancement factor 〈|γ1γ2γ3|〉.

Instead, the means remain close to unity. This occurs due to the fact that the distribution of

the enhancement factors in the complex plane remains narrow, as shown in Fig. 5.19, rather

than the broad distributions of γ1,3 seen in Fig. 5.10. The fact that absorption quenches the

effect of multiple scattering, such that the enhancements are ∼ 1, is to be expected, since when

ls > LSPP, scattered light is absorbed before it can be rescattered. The tight distributions
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Figure 5.18: Equivalent of Fig. 5.9 for the ‘high loss’ case of λ0 = 600nm and α = αg2. Figure
reprinted with permission from Ref. [288] © 2021 American Physical Society.

mean that 〈|γi|〉 ≈ |〈γi〉|, while the ladder approximation does not provide a good description

of 〈|γ1,3|〉. To explain the significant difference in the widths of the probability distributions

between the high and low loss cases, it is helpful to compare the effect of a scattering event

within a multiple scattering trajectory with the role propagation between scattering events plays

in the same trajectory. The phase and amplitude an individual scattering path contributes to an

enhancement factor can be divided into contributions from scattering events (Ascate
iΦscat) and

from propagation between scattering events (Aprope
iΦprop), and the total enhancement factors

are determined from the sum over all possible paths ∼
∑

pathsAscate
iΦscatAprope

iΦprop . Different

realisations give rise to different propagation factors as the relative position of scatterers changes,

however the scattering contribution for a given sequence of scatterers is unchanged, since the

individual scatterer properties are unchanged. Averaging over realisations leads to cancellation

of the propagation contribution due to the random Φprop and thus the complex mean simplifies to
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Figure 5.19: Equivalent of Fig. 5.10 for the ‘high loss’ λ0 = 600nm case, with α = αg2, showing the
probability distribution of the enhancement factors over the complex plane.

the sum of the deterministic Ascate
iΦscat factors arising from scattering events. In the presence of

absorption, scattering paths longer than LSPP have a small amplitude Ascat and hence contribute

negligibly to the enhancement factors for that particular realisation. In the low loss case (with

LSPP = 9.9λ0), a large number of scattering paths several wavelengths long contribute. As the

paths extend over multiple wavelengths, the phases Φprop are essentially uniform and random and

thus the sum over scattering paths can give a significantly different result to the complex mean.

On the other hand, only a relatively small number of scattering paths shorter than LSPP = 1.6λ0

contribute significantly to the enhancement factor in the high loss case. Furthermore, the

amplitude decay due to absorption over the wavelength scale is significant (the amplitude decays

by ∼ 20% over one SPP wavelength in the high loss case compared to ∼ 2% in the low loss case),

very short sub-wavelength scattering paths for which Φprop is close to zero will have significantly
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higher amplitude and contribute more to the total enhancement factors. As a result, the high

loss case is close to the complex mean since the propagation has little effect. The behaviour

of γ1,3 in the high loss case is therefore dominated by the scattering phase shift. The ladder

approximation result is no longer valid in the high loss case since, in deriving Eq. (5.70), the

phase and amplitude of each term in the sum was assumed to be independent. This assumption

does not hold when LSPP ∼ λSPP as the short paths with Φprop = 0 (and therefore having a

phase of ∼ Φscat) have larger amplitudes.

5.4.2 Polarisability Dependence of Peak Enhancement

The fact that the high loss case gives rise to a tighter distribution of γi centered close to 〈γi〉

means the amplitude enhancements inherit the dependence on arg(α) and k‖, and thus are more

sensitive to observation position and scatterer properties, compared to the low loss case where

the random phasor sum model predicts no k‖ dependence and the dependence on arg(α) only

arises in the modified absorption length within the ladder approximation. A stronger dependence

on α is significant in the context of sensor design, since it would imply optimising the choice

of the individual scatterers making up the multiple scattering environment is important. In

particular, choosing α and k‖ such that the divergence condition of Eq. (5.60) is satisfied could

allow large enhancement factors to be achieved even in the presence of strong absorption. Since

G̃(k‖) ∝ 1/(k2
SPP − k2

‖), the choice of observation point such that k‖ is close to the pole at kSPP,

i.e. k‖ = k′SPP, ensures a large |G̃| and thus the optimum density predicted by Eq. (5.59) is

reduced. In addition, it ensures the optimum density condition for γ1 and the lossless version of

γ3 coincide (since the input and output wavevectors are equal). While such an observation point

is not possible for a setup consisting of a single metal-dielectric interface since k′SPP > ε
1/2
d k0, it

is possible for SPPs in multilayer structures and corresponds to the leakage radiation ring. Some

of the benefits of measurements in the leakage radiation ring have already been discussed within

the single scattering analysis, and the multiple scattering enhancement applies in addition to

these effects such as the confinement of scattered light giving large intensities. While such a

multilayer configuration alters the Green’s function and surface dressing, the functional form

of GSPP remains the same for points in the lower index dielectric near the surface of the gold
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Figure 5.20: Equivalent to Fig. 5.9 for λ0 = 600nm, α = −αg2 and k‖ = −k′SPPx̂. Figure reprinted
with permission from Ref. [288] © 2021 American Physical Society.

film, with only the parameter values changed (i.e. A0, kSPP, a and α). Therefore, one can now

consider such an observation position, keeping in mind that the parameters in the model will

no longer correspond to the same physical properties of scatterers. The high loss case results

equivalent to Fig. 5.18 except for with k‖ = −k′SPPx̂ and the polarisability phase shifted by π

so that α = −αg2 are shown in Fig. 5.20.

Note that since the amplitude of the polarisability is unchanged, the cross-section and mean

free path are also unaltered. The phase shift to α, in addition to changing the absorption loss

from a single scatterer, also affects the phase difference between the scattered and incident

field. The chosen phase means the divergence condition of Eq. (5.60) is nearly satisfied. This

means the phase difference between the SPP incident on a scatterer and the SPPs radiated by

the scatterer is small and hence the scattered field can add in phase with the incident field to

give a larger enhancement. Unlike the observation point in the upper half space, the analytic
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Figure 5.21: The dependence of 〈|γ1γ2γ3|〉max and lopt,tot on the phase of α (or equivalently µ) for
(a) the high loss λ0 = 600nm case and (b) the low loss λ0 = 650nm case. The median value of |γ1γ2γ3|
at lopt,tot is also shown. The vertical dashed line indicates the phase of α at which the divergence

condition Im[αG̃(k‖)] = 0 from Eq. (5.60) is satisfied. Points for which 〈|γ1γ2γ3|〉max ≤ 1 are not
plotted but denoted by the shaded blue region, since this indicates no amount of multiple scattering
improves sensitivity on average and single scattering (i.e. n = 0) provides the best mean sensitivity.
Figure reprinted with permission from Ref. [288] © 2021 American Physical Society.

results for the complex mean are only accurate at lower densities. More importantly, the mean

amplitudes now exhibit the density dependence seen in Fig. 5.9, with an optimum density at

which amplitude enhancements ∼ 102 are achieved. In the low loss case, the leakage radiation

ring observation position has little effect on the mean amplitude density dependence. The

maximum mean total absolute enhancement 〈|γ1γ2γ3|〉max and density nopt,tot (and corresponding

mean free path lopt,tot) at which it occurs were calculated numerically as the phase of µ (or

equivalently α) was varied with |µ| held constant and k‖ = −Re[kSPP]x̂. The dependence of

〈|γ1γ2γ3|〉max and lopt,tot on arg(α) is shown in Fig. 5.21.

For the low loss case, Fig. 5.21(b), mean enhancements of at least one order of magnitude

〈|γ1γ2γ3|〉max > 10 are always achievable regardless of arg(α), with the value varying slightly

with arg(µ), albeit remaining ∼ 102 for a broad range of phases. The optimum phase condition

predicted from Eq. (5.60) coincides with the region where the numerically calculated maximum

mean enhancement is largest and is also achieved at the lowest scatterer density (and therefore

longest scattering mean free path). In contrast, for the high loss case, Fig. 5.21(a), there exists

a range of arg(α) for which no enhancement is observed on average and 〈|γ1γ2γ3|〉max ≤ 1, since

absorption prevents multiple scattering enhancements. Tuning of arg(α) does nevertheless allow

a similar level of enhancement to the low loss case to be achieved, with the divergence condition
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introduced by Eq. (5.60) providing a good predictor of the optimum phase. On the other hand,

Eq. (5.59) does not provide an accurate prediction for nopt,tot (or indeed nopt,1 calculated from

the Monte Carlo simulations). The fact the optimum phase prediction of Eq. (5.60) remains

accurate, while the optimum density prediction of Eq. (5.59) does not, can be understood by

considering the role of loop paths, ignored in deriving Eqs. (5.59) and (5.60). As the density

increases, loop paths become significant and alter the form of Eqs. (5.53)–(5.55) so that the

maximum |〈γi〉| occurs at a different density. In addition, the difference between |〈γi〉| and

〈|γ1γ2γ2|〉 can also lead to a difference between nopt,tot which maximises 〈|γ1γ2γ2|〉 and nopt,i

which maximises |〈γi〉|. On the other hand, the phase shift from each scattering event in a

trajectory is the same whether the trajectory contains loops are not. Therefore, the condition

on α for the scattered field to be in phase with the incident field is unchanged by the inclusion

of the loop paths and thus the no loop phase condition remains accurate.

5.4.3 Enhancement Factor Correlations

While much of this chapter has studied the statistics of individual enhancement factors separately,

they are not statistically independent since they depend on the same underlying random

variables (i.e. the scatterer positions ri). Indeed, Figs. 5.12 and 5.16 demonstrate this

clearly through the fact 〈|γ1γ2γ3|〉 6= 〈|γ1|〉〈|γ2|〉〈|γ3|〉. At low densities, the fact that the

enhancement factors are correlated has little effect and the two quantities are approximately

equal. Close to the optimum density, the correlations between enhancement factors serve to

reduce the total amplitude enhancement such that 〈|γ1γ2γ3|〉 < 〈|γ1|〉〈|γ2|〉〈|γ3|〉, while in the

localisation regime with decreasing enhancement factors, the correlations have the opposite effect

as 〈|γ1γ2γ3|〉 > 〈|γ1|〉〈|γ2|〉〈|γ3|〉. Analysis of the Pearson’s correlation coefficients Pij between

|γi| and |γj| (i 6= j), plotted in Fig. 5.22 reveals that |γ2| shows weak correlation with the other

enhancement factors, with |P23| < 0.2 across the full density range and |P12| < 0.2 except at the

very highest density for the α = iαg1 case, were P12 ∼ −0.4. This lack of strong correlation can

be understood to arise from the fact that the loop paths associated with γ2 are distinct from

the scattering paths in γ1,3 that start and end at distinct scatterers. In contrast, scattering

trajectories contributing to γ1 and γ3 are partially related by reciprocity as discussed in Section
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Figure 5.22: The Pearson correlation coefficients Pij of the enhancement factor amplitudes in the
low loss case for (a) α = αg1 and (b) α = iαg1.

5.2.5, with any given multiple scattering trajectory from rN+1 to ri (associated with γ1) having

the same phase and amplitude as its reciprocal path going from ri to rN+1 (associated with

γ3). Much like in coherent backscattering and weak localisation, the outgoing/incoming legs,

i.e. propagation of the scattered field from ri to r for γ1 and propagation of the incident field

to ri, can still cause the reciprocal paths to contribute different phases and amplitudes to the

respective enhancement factors, allowing for decorrelation of |γ1| and |γ3|. At low densities,

the propagation phases, and hence enhancement factors, remain uncorrelated (|P13| . 0.1) as

the long propagation between scatterers randomise the phase, however, at higher densities the

typically shorter distances between scattering sites and the analyte particle mean the phase

difference of the incident and outgoing fields are smaller resulting in increased correlation

(0.6 . P13 . 0.8). The phase shifted polarisability case α = iαg1 transitions to this correlated

regime at a higher density, coinciding with the onset of the optimum density regime.

5.5 Conclusion

In this chapter, the effect of multiple scattering on the field perturbation caused by the addition

of an analyte particle was encapsulated in three enhancement factors, each arising from distinct

classes of multiple scattering paths. The statistics of the enhancement factors were studied in

the context of SPP scattering, both analytically and numerically with Monte Carlo simulations.
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It was found that multiple scattering could increase the field sensitivity by a factor of ∼ 102

relative to the single scattering sensitivity. Additionally, the enhancement showed sensitivity to

scattering parameters such as scatterer density, polarisability and the amount of absorption. In

particular, it was seen that, for long absorption lengths, there existed an optimum scatterer

density which maximised the mean enhancement, and above this optimum density, localisation

effects served to reduce the multiple scattering enhancement, and even reducing sensitivity at

sufficiently high densities. For very short absorption lengths LSPP ∼ λSPP, the enhancement

factor statistics showed greater sensitivity to the individual scatterer properties, with there also

existing an optimum polarisability phase to maximise the mean amplitude of the enhancement

factors.

These results can help inform the design of random nanostructured surfaces for sensing,

indicating that by choosing the correct density of nano-scatterers on the surface and optimising

their optical or geometric properties, one can improve the sensitivity by up to two orders of

magnitude over a flat surface.
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Chapter 6

Neural Network Based Tracking

The tracking method developed in Chapter 4 relies on knowledge of the relationship between

the shift in analyte particle position and the resulting change in the phase and amplitude of the

light scattered from the analyte particle, which in the multiple scattering regime depends on the

scattering configuration, differs from realisation to realisation and is not known in general. The

results in Chapter 5, however, suggest that there may be gains in sensitivity from working in the

multiple scattering regime, while multiple scattering may also be unavoidable in some complex

biological media. As such, it would be useful to develop a tracking algorithm that could extract

the trajectory from speckle patterns formed in the multiple scattering regime. This chapter

investigates achieving this aim through the use of a neural network based tracking algorithm

6.1 Neural Network Background

Machine learning has seen much research interest in recent years, enabled by rapid advancements

in computing technology. It has found many applications in science and in optics in particular.

An artificial neural networks is a prominient example of a machine learning tool which is widely

used in many machine learning applications. The fundamental building block of a neural network

is the node or Perceptron [4, 359, 360]. A single node takes in a set of M input variables ai and

has associated with it a series of M weights wi. The node linearly combines this set of inputs

with the appropriate weight to give a single number T = w0 +
∑M

i=1 wiai. The constant offset

w0 is often referred to as the bias of a node. The node output b is then given by an activation
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Input Layer ∈ ℝ¹ Hidden Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ² Output Layer ∈ ℝ¹

Figure 6.1: A simple example of a fully connected feed forward neural network, with each node in a
layer connected to every node in the subsequent layer. The neural network shown consists of a single
element input, a hidden layer of 4 nodes, a second hidden layer of 2 nodes and a single element output.
Lines indicate the left node ouput is fed as input to the right node.

function g(x) via b = g(T ). As such, a single node takes in M inputs and gives out a single

number. A neural network is formed by a connection of these nodes [361], so that the output

from a set of nodes is fed as input into other nodes. There are many ways to connect nodes in a

network, giving rise to a wide range of different architectures. Typically, nodes are arranged

in layers, with nodes in each layer connected to nodes in adjacent layers [362]. Layers which

are not the input or output are referred to as hidden layers, since the output of nodes in such

layers is not seen, and they only act as an intermediate step towards the final output. A simple

example of network architecture is a fully connected network, in which a node is connected to

every node in the subsequent layer, as illustrated in Fig. 6.1. Other architectures with different

connections between nodes are also used, including some such as liquid state machines where

nodes cannot be simply grouped into layers [363].

A neural network is determined by the architecture and the choice of weights wi and activation

function g(x). Together, these define a function from the input vector a to the output vector

y, where the vectors consist of an ordered list of all the input variables ai or output variables

yi. The size of these vectors depend on the network architecture. A key feature of artificial

neural networks is that they can act as a universal function approximator [364, 365, 366].

This means that a sufficiently wide (i.e. a large enough number of nodes in a single layer)

[364, 365] or deep (i.e. a large enough number of layers) [367, 368, 369] neural network with a

non-linear activation function can get arbitrarily close to any continuous function with domain

and codomain matching the input and output sets respectively through the correct choice of

weights. As a result, neural networks can be used to approximate a functional relationship
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between real world data, even when the exact relationship is unknown.

While a neural network is capable of approximating a given real world function, the set

of weights required to approximate the particular function is unknown. In order to achieve

the correct weights, a machine learning element must be incorporated. This means that a

subset of the data where the input and desired output are known is used to train the neural

network towards getting the correct weights. Firstly, a loss function L(ytrue,ypred) is defined

which quantifies the error when the neural network gives an output ypred for an input with

a true output ytrue. The choice of loss function depends on the context [370], for example in

categorisation problems, a logarithmic cross-entropy loss function is often used, while when

fitting the neural network to a real valued function (the context relevant to this chapter), a

mean square deviation loss function is common [371]. In general, the loss function decreases as

ypred approaches ytrue and is minimised when ytrue = ypred. While the loss function is defined as

a function of ypred and ytrue, it is also implicitly a function of the weights of each node, since

changing the weights changes ypred and therefore L. The training of a neural network on a set of

training data, i.e. a set of Ntrain inputs a(i) and known true outputs y
(i)
true, involves finding the set

of weights which minimises the average value of the loss function
∑Ntrain

j=1 L(y
(j)
true,y

(j)
pred)/Ntrain,

where y
(j)
pred is the neural network output corresponding to the input a(j). Provided the training

data is representative of the underlying sample space from which it is drawn, this trained

network should then give an output value close to the true value even when encountering an

input not in the training set. In quantifying the performance of the neural network on unseen

data, the appropriate metric is not always the value of the loss function. In a categorisation

problem, a success rate (i.e. fraction of a test data set put in to the right category) is a more

appropriate measure of the effectiveness of the neural network, but differs from the loss function.

A quantity measuring neural network performance for a given dataset is referred to as a metric,

while loss specifically refers to the value of the loss function, which in some contexts can also be

an appropriate metric.

An important caveat to the idea of minimising the loss of a dataset is that it is also possible

to overtrain the network. This means that the neural network learns features of the training

data that do not apply to the wider sample space, and therefore does not perform well when
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applied to unseen data not in the training set [372, 373]. This effect is analogous to overfitting in

curve fitting, in which, with sufficient free parameters in the fitted model, one can perfectly fit a

curve to pass through all the data points, while clearly not providing an accurate description of

the real underlying curve between the data points. A widely used approach to avoid overfitting

is early stopping [373, 374, 375]. In addition to the training data set, some data is used as

a validation data set, which is not used to train the network, but instead used to calculate

a performance metric (this could be the average loss of the validation dataset, or some other

measure). This provides a measure of how well the network generalises, and the validation

metric beginning to increase (i.e. performance gets worse) with iterations of the optimisation

algorithm indicates that overfitting is starting to occur. At this point, the training is stopped

to prevent overfitting. In reality, the stochastic nature of the optimisation algorithm means

the validation metric can increase for a few iterations before decreasing again after more. Such

behaviour is not indicative of overfitting, for which one would see an increase (or at least no

decrease) in the validation metric as more optimisation iterations were performed. Thus, an early

stopping algorithm typically has a patience hyperparameter, defining how many iterations to be

performed showing no decrease in validation metric before stopping the training and restoring

the weights to the values which minimised the validation metric. Note that a hyperparameter

refers to some parameter of the training algorithm set by the user, to distinguish it from the

neural network parameters (i.e. the weights) [376, 377]

6.1.1 Optimisation Algorithm

So far, the specifics of the optimisation algorithm used in training the neural network have not

been discussed, and the theory behind training the network does not depend on the minimisation

procedure. The nature of the optimisation problems associated with training neural networks,

in particular the potentially large number of weights and training data, mean certain algorithms

tend to be used more commonly for training. Most of the commonly used optimisers are based

on gradient descent [378]. In this approach, starting from an initialised vector of all weights

W0, the weights are updated iteratively, with the kth iteration Wk calculated from the previous
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iteration via

Wk = Wk−1 − αlr∇WF (Wk−1), (6.1)

where αlr determines the size of the steps taken and is referred to as the learning rate in the context

of neural network training, ∇W denotes the gradient in the vector space of the weights and F (x)

is the function being minimised, which here would be F (W ) =
∑Ntrain

j=1 L(y
(j)
true,y

(j)
pred)/Ntrain.

The idea behind gradient descent is that F decreases fastest in the direction −∇WF , and thus,

provided αlr is not to big, stepping in this direction from Wk−1 to Wk decreases the objective

function, F (Wk) < F (Wk−1). As a result, the iterations give lower and lower values of F ,

heading towards a (local) minimum. The form of F presents a problem when there is a large

amount of data, as one has

∇WF =
1

Ntrain

Ntrain∑
j=1

∇WL(y
(j)
true,y

(j)
pred), (6.2)

meaning that one would have to calculate the loss function gradient for each member of the

training set. For a large dataset, calculating so many gradients can be prohibitively time

consuming, especially if there is also a large number of weights. As a result, variants of a

stochastic gradient descent (SGD) algorithm are used [378, 379]. In SGD, rather than use the

full training dataset to calculate the gradient, a random subset is used to estimate the gradient.

Thus, the iterative relation is

Wk = Wk−1 −
αlr

Nbatch

∑
j∈batch k

∇WL(y
(j)
true,y

(j)
pred), (6.3)

where the training data has been randomly divided into ceil(Ntrain/Nbatch) batches of size Nbatch

(though the last batch will be smaller if Nbatch does not divide Ntrain). Once all the batches

have been used, the algorithm has completed an epoch. The training data is divided into new

random batches and the process continued in a new epoch. Sometimes, SGD specifically refers

to the case where Nbatch = 1, while the case 1 < Nbatch < Ntrain is called mini-batch gradient

descent. Here, both cases shall be referred to as SGD and the batch size treated as a parameter
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of the learning process. There exist many adaptations of SGD based on slightly modifying the

estimated step between weight iterations calculated from a batch from a simple gradient. One of

the most widely used versions is the ‘Adam’ SGD [380], which is the optimiser used to train all

the neural networks presented in this chapter. The name ‘Adam’ comes from adaptive moment

estimation, and it makes two key alterations to the basic SGD algorithm. Firstly, rather than

using the gradient estimate calculated from a single batch to generate a step, the gradient

estimate is calculated as a weighted average of the gradient from the previous step and the

gradient calculated from the current batch. Additionally, a running second moment estimate

(i.e. uncentered variance) is also used to calculate the step size, ensuring that batches with high

uncertainty as to how well the gradient estimate matches the true gradient give comparatively

smaller steps. More detailed description of the algorithm can be found in Ref. [380]. In addition

to αlr, ‘Adam’ requires two additional learning hyperparameters, β1 and β2 between 0 and 1

which describe the weight given to the estimate from the previous iteration of the first and

second moment of the gradient respectively in calculating the updated estimate of the moments.

6.1.2 Neural Networks in Optics and Imaging

Neural networks have found many uses within optics, microscopy and imaging. Applying neural

networks in image processing has a clear logic, in that one wishes to find a function from a

collection of spatially ordered pixel values onto some information that is known to be contained

within the image, but such a function is not known. Due to the spatially ordered nature of

images, convolutional neural networks (CNNs) have found much use in image processing [381].

In a CNN, rather than linearly combining all the input pixels in a node, the image is convolved

with a kernel, to give a feature map which retains the spatial ordering information. Convolution

is a linear operation, and thus computationally, the process is not significantly demanding

compared to linearly combining all the pixels as in the case of a perceptron discussed above.

The weights (i.e. parameters tuned in training) in a CNN are the elements of the kernel, while

the kernel shape is a manually set hyperparameter. The use of a non-linear activation function

is still present in CNNs. One image processing application of neural networks is in categorising

what is shown in the image [382, 383]. For example, a human can recognise if an image shows a
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cat, so some link exists between the properties of the image (i.e. the spatially ordered pixel

values) and the categorisation as a cat. A neural network learns to approximate a function

making this link from image to cat. Another image processing application of neural networks,

relevant to the context of this thesis, is in the field of localisation microscopy. As discussed

in Chapter 2, point emitters give rise to a PSF in the microscope image. As a result, there is

a function linking the image to the emitter position, and a neural network can be applied to

learn this function [4, 384]. In this case, there exists non-machine learning based approaches

in which one fits a known PSF, for example through maximum likelihood estimation (MLE)

with a PSF calculated through diffraction theory [385]. Though it is not required, using a

neural network approach does bring advantages over the standard PSF fitting based approaches.

Firstly, the PSF fitting approaches such as MLE can be extremely computationally demanding,

especially when multiple emitters must be localised in many different frames [386]. In contrast,

once trained, a neural network only needs to evaluate a series of linear transforms and function

evaluations, meaning a neural network can perform higher throughput localisation compared to

conventional PSF fitting approaches. In addition, a neural network can be trained to extract

additional information on top of the emitter position, for example labelling individual objects or

isolating them [177]. Finally, in the context of PSF engineering, the optimisation of the system

PSF can be incorporated in the learning process, so that, in addition to the neural network

learning how to localise emitters, the PSF is being optimised to improve localisation [387, 388].

Generally, such neural network based localisation microscopy approaches follow the methods

described in Chapter 2, except with the image processing stage to extract object’s position

(or any other information) is performed by the neural network [389, 390]. Thus, techniques

such as TIRF, STORM and PALM have had neural network based processing incorporated

[391, 392, 393]. Highly accurate numerical simulations of microscope image formation allow a

large amount of training data to be generated numerically rather than experimentally, making

comprehensive training of the localisation neural networks possible without time consuming

experiments.

Another area of optics where neural networks and machine learning in general has found

applications is imaging through scattering media, and extracting information from speckle
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patterns. Neural networks can enable imaging through scattering media by learning the non-

linear inverse scattering function linking the intensity in the object plane to the speckle image

formed after propagation through the scattering medium [394, 395, 396]. This allows for imaging

through fixed random configurations such as multi-mode fibres or glass diffusers, but since the

neural network learns the particular inverse scattering function for the realisation of disorder

it is trained on, it does not generalise to different realisations [397, 398]. Via training on

multiple different realisations of disorder, a CNN has, however, been shown to be capable of

imaging through realisations of disorder different to those in the training data, which would

allow imaging through dynamic scattering media where the realisation changes between imaging

frames [399]. As well as imaging, neural networks have been trained to extract other information

from speckle patterns, such as identifying the scatterer composition [400] or labelling objects

[401]. In addition to imaging, neural networks have been used in other light control applications

in scattering media, such as focusing, beam and wavefront shaping and learning the relationship

between transmitted and reflected speckle patterns [396, 402, 403].

This is by no means an exhaustive review of the numerous applications of neural networks

in optics, for example it also finds use in holography and phase extraction [404, 405]. The wide

range of applications arises in part due to the universal function approximation capability. The

use of neural networks in both localisation microscopy and the study of random light scattering

media is emphasised here as they are most relevant to the work in this thesis. In both these

applications, there is known theoretically to be a functional dependence of the measured image

or speckle pattern on the desired quantity (e.g. particle position or object plane intensity

distribution), but it is not feasible to find this link using the detailed physics, so a neural network

learns the link from data.

6.2 Theory of Neural Network Localisation from Speckle

As established in Chapter 3, Maxwell’s equations provide a link between a given scattering

dielectric distribution and the electric field. Indeed, for a fixed incident field, Eq. (3.16) can

be considered to define a higher order function (i.e. a function that maps a set of functions
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onto another set of functions) from a dielectric distribution εs(r) onto an electric field E(r),

E(r) = FE(εs(r)). As a result, there is also a function mapping εs onto the intensity, I(r) =

FI(εs(r)). Note that no single scattering approximations have been made, as the full form of Eq.

(3.16), rather than the Born approximation, defines the mapping functions FE and FI . If FI is

invertible, then it can also be deduced that there is a function from the intensity distribution

onto the scattering configuration, namely εs(r) = F−1
I (I(r)). Requiring FI to be invertible

means that two scattering configurations cannot give rise to the same intensity distribution. This

condition has been shown to hold in certain cases [406, 407, 408, 409, 410, 411], depending on the

properties of εs and the domain over which I(r) is defined (i.e. where the intensity is measured in

an experimental context). For scalar waves in 3D, for example, it has been shown that the values

of I(r) on the surface of a sphere uniquely determine εs(r), provided εs is real and has compact

support (along with some more technical conditions on the differentiablity of εs) [406]. It shall

be assumed F−1
I exists. In the case where εs is a random scattering potential, I(r) is a speckle

pattern, with the implication being there exists a function from a measured speckle pattern

to a scattering potential. Thus, while the speckle pattern is often modelled statistically, the

properties are still a deterministic function of the given scattering configuration. Furthermore, if

εs can be parameterised by some other function or set of numbers, then there exists a function

relating the speckle pattern to these parameters. For example, for a randomly rough surface,

Eq. (3.35) parameterises εs in terms of the surface height profile ζ(ρ), and thus there is a

function from the speckle pattern to the rough surface profile, ζ(ρ) = F−1
ζ (I(r)). Indeed, a

neural network based on learning Fζ to map random nanostructured surfaces supporting SPPs

onto leakage ring speckle patterns has been developed [278]. Finally, considering the case where

the random scattering configuration is fixed except the analyte particle, there is a function

from the set of speckle patterns generated by this arrangement onto the analyte particle state,

parameterised by the position and orientation as discussed in Chapter 4, i.e. [ra, ξa] = F−1
r (I(r)).

Finally, if one discretises the measured speckle intensity at NI points ri with Ii = I(ri), the

function maps a NI element vector onto the analyte particle parameters. In discretising, NI

must be sufficiently large and the pixels distributed over a wide enough region to retain the

uniqueness of the speckle pattern to scattering configuration mapping, since even if the speckle
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Input Layer N elements Hidden Layer 1024 elements Hidden Layer 512 elements Hidden Layer 256 elements Output Layer 3 elements

Figure 6.2: Schematic of the structure of the dense neural network used to localise the particle
position from the leakage ring speckle pattern intensity profile. The number of nodes shown does not
represent the true size of each layer (except for the final output layer).

patterns for two different scattering configurations are different, the intensities can be equal at

a finite set of points. With the existence of this speckle pattern to analyte particle parameters

established, it can now be seen how to apply neural network based tracking algorithm. The

neural network learns to approximate the mapping from a training dataset of measured speckle

intensity profiles where the position of the analyte particle is known. Importantly, the algorithm,

unlike the one developed in Chapter 4, makes no assumptions about the scattering regime and

thus should work in the presence of strong multiple scattering.

6.3 Simulation of Neural Network Tracker

To verify the effectiveness of the neural network tracking algorithm, a dense feed-forward neural

network was designed to extract the analyte particle position from the speckle intensity profile

around the leakage radiation ring in the random SPP scattering system introduced in Chapter

3 and tested on simulated data. The structure of the neural network is shown in Fig. 6.2,

consisting of an input layer, the vector of size Nφ consisting of the discretised speckle intensity
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around the leakage ring Ii = I(φi), three hidden layers of size 1024, 512 and 256 and an output

layer corresponding to the position of the analyte particle (either 2 or 3 outputs, depending

on whether the algorithm was performing 2D or 3D tracking). A rectified linear unit (ReLU)

activation function is used, defined by g(x) = max(0, x) [412, 413].

6.3.1 Normalisation of the Input

It is standard practice in neural networks to normalise the input so that the values are generally

distributed between −1 and 1 [414, 415]. This can be either a hard limit (i.e. use ai/max(|ai|))

or a z-score type normalisation (i.e. (ai − µ)/σ where µ and σ are the mean and standard

deviation of the input values ai) where input values of magnitude much larger than 1 become

increasingly improbable. There are several good reasons for this from a machine learning

viewpoint. One of the main motivations for normalising is that it often improves generalisation,

removing the scale of the training data from the neural network. For example, in classifying

objects in images, doubling all the pixel values in a given image clearly does not change what is

shown in the image, but without normalisation, a neural network could give a very different

output for this image, even though the doubled intensity image should be classified in the same

way as the original image. It could be argued that this point is less relevant to the speckle based

tracking neural network being developed in this chapter, since different binding positions ra will

give different scale of intensities, for example if the particle binds in a hotspot or darkspot, and

thus the scale information is relevant. There does, however, remain a generalisation advantage

to normalising. If one trains the network on data from a specific analyte particle, the network

only learns speckle patterns for that analyte particle, and would not work for different size

or refractive index particles. The intensity perturbation ∆I = I − Ib (Ib being the speckle

intensity in the absence of the analyte particle) contains the particle scattered intensity and

the interference with the background speckle, just for now considering the single scattering

regime. The interference term scales as ∼ |α| ∝ R3
a, while the direct term scales according

to ∼ |α|2 ∝ R6
a. If the interference term dominates, as it does for small biological particles,

the intensity perturbation has a simple proportional scaling with |α| (or R3
a) which can be

normalised out to allow the neural network tracker to generalise to different size analyte particles.
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Allowing for the effects of multiple scattering, rather than the direct intensity and interference

of the light scattered from the particle, the intensity perturbation is made up of a direct term

and interference term of δE(r) = G(r, ra)γ1γ2γ3p0, assuming the point scattering model from

Chapter 5 is valid. In Chapter 5, it was established that γ1 was independent of the analyte

particle polarisability, αN+1, as was γ3 for scalar αN+1, (i.e. a rotationally symmetric analyte

particle). Similarly, for sufficiently small analyte particles γ2 = (1 − const. × αN+1)
−1 ≈ 1

and the effect of γ2 is negligible. Under these conditions, |δE| ∝ |αN+1| and the same scaling

of the interference term with |αN+1| as the single scattering regime is found. As such, the

generalisation of the neural network tracker to different analyte particles to the training analyte

particle via appropriate normalisation also applies in the multiple scattering regime.

In addition to the improved generalisation, there are other reasons for normalising data. By

ensuring the scale of the data is comparable to that of other previously studied neural networks,

the same heuristic rules can be applied, for example the values of the hyperparameters such as αlr.

Furthermore, the most commonly used activation functions have a natural scale of unity. Machine

learning programming libraries are often optimised for input and output values in the range −1

to 1, so normalising is easier than trying to adapt the various functions to match the scale of

the unnormalised data. For the tracking neural network, the normalised input ∆̃I i = ∆̃I(φi) is

taken to be the intensity differences normalised by the maximum magnitude intensity difference

so that all elements lie between −1 and 1, i.e. ∆̃I(φi) = ∆I(φi)/max[|∆I(φi)|]. Similarly, the

output is normalised, with a normalised analyte particle position r̃a = 2ra/max(Lx, Ly). Here,

Lx,y are the widths in the x and y directions of the box bounding the training data. This

normalisation means all training data has a true output vector with elements between −1 and

1, though it is possible for the neural network output to be outside this range.

6.3.2 Simulation Methods

Simulated data was generated via two methods, both discussed in Chapters 4 and 5. Both

simulations assumed a rotationally symmetric analyte particle, so that there was no ξa depen-

dence. The first method, described in Chapter 4, involved generating a Gaussian distributed

background random speckle field and then adding the dipolar field for a dipole located at ra.
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This method fails to account for any multiple scattering, but can rapidly generate a lot of data

and therefore is useful for assessing the neural network tracker in the single scattering regime.

Since the motivation in developing the neural network tracker was to enable tracking in the

multiple scattering regime, a simulation method accounting for multiple scattering is required.

This is achieved using the coupled dipole model discussed in Chapter 5. While this accounts for

all scattering orders, it is significantly slower owing to the requirement to invert M , which is of

size 3(Nsc + 1)× 3(Nsc + 1) for Nsc background dipole scatterers, plus the analyte particle. In

order to facilitate faster computation, the speckle profiles Ii were calculated on a 2D (x, y) grid

with spacing λ0/30, and then ∆Ii for any random point was calculated via linear interpolation

from the grid at each observation angle φi. Furthermore, for coupling between dipoles, the

scalar SPP Green’s function defined in Eq. (5.79) was used, while the far field Green’s tensor

is used in propagating to the leakage ring. The use of these Green’s tensors reduces M to

an (Nsc + 1)× (Nsc + 1) matrix by virtue of the scalar coupling, while also ensuring that all

Green’s functions can be calculated analytically, rather than requiring numerical integration of

Eq. (3.29) as would be required to find the full Green’s tensor between different dipoles. While

these approximations may not be fully justified, it should be emphasised that the purpose of

these simulations is not to accurately describe a specific speckle pattern generated by a specific

instance of disorder, but rather to verify that the neural network based tracking algorithm works

in the multiple scattering regime and understand some of the important physical parameters

affecting its performance. Thus, the fact that this model incorporates multiple scattering in a

physically consistent manner is more important than its accuracy describing a specific physical

arrangement. A final caveat for the coupled dipole simulations is that the analyte particle was

restricted to a fixed plane z = Ra above the surface, and only 2D localisation was performed.

Most simulations were performed at λ0 = 721nm, for a 50nm thick gold film (nm = 0.13+4.24i)

on glass (ng = 1.51) with water above the film (nd = 1.33). The analyte particle was modelled

as a homogeneous sphere of refractive index np = 1.4, while in the coupled dipole simulations,

the background scatterers were modelled as 50nm radius gold spheres sat on the metal surface.

The Nsc background scatterers were uniformly randomly distributed on the surface across a

rectangle of dimensions 4LSPP × 4LSPP (noting that the random configuration is fixed for a
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given dataset).

6.3.3 Training

The neural network, implemented in a TensorFlow python framework [416], was trained on a set

of Ntrain simulated speckle profiles with the analyte particle at uniformly distributed random

positions ra in a box of dimensions Lx×Ly×Lz, or Lx×Ly for the 2D coupled dipole case. The

coordinate system was chosen such that the (x, y) origin lay at the centre of the box (and also

coinciding with the centre of the box within which the background scatterers are distributed

in the coupled dipole simulations), so that −Lx/2 ≤ xa ≤ Lx/2, −Ly/2 ≤ ya ≤ Ly/2 and

Ra ≤ za ≤ Lz. The loss function L(ˆ̃ra) = |ˆ̃ra − r̃a| corresponded to the Euclidean distance

between the (normalised) estimated and real position. Note that this is also an appropriate

metric to measure the localisation performance, so in this case the loss is also used as a metric.

The training used the ‘Adam’ SGD method for weight optimisation, with hyperparameters

αlr = 0.001, β1 = 0.9 and β2 = 0.999 (from a combination of numerical experimentation and

previous literature [380]). Early stopping (with the validation loss used as the validation metric)

was used with a patience of 50 epochs. The training data was split so that 80% was used for

training and 20% used for validation.

6.3.4 Neural Network Performance

The primary metric used to assess the performance of the trained neural networks is the mean

total error 〈|ra − r̂a|〉, where the average is taken over many different true values of ra. Unless

otherwise stated, all mean error values are calculated from 2× 105 random position realisations

uniformly distributed with equal probability throughout the training box. Note that the test

data is unseen, meaning it is not from the training data. An important parameter affecting the

performance is the training set size, Ntrain (i.e. the number of different Ii speckle profiles for

different ra provided to the neural network to learn from). Intuitively, the more speckle examples

provided, the better the localisation precision as there is more likely to be an analyte particle

position in the training data near a particular point. The training set size can be converted

into an effective training sampling density ρ3D
train = Ntrain/LxLyLz (in 2D ρ2D

train = Ntrain/LxLy),
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Figure 6.3: Mean error as a function of training set size for (left) Gaussian random vector simulated
speckle at different ratios of particle scattered intensity to background speckle intensity Ia/Ib and
(right) coupled dipole simulated speckle at different scattering mean free paths ls (or equivalently
scatterer densities).

and mean separation of training points ∆r3D
train = (4πρ3D

train/3)−1/3 (∆r2D
train = (πρ2D

train)−1/2). The

dependence of the mean error on training set size is shown in Fig. 6.3 for both Gaussian

simulated single scattering speckle and coupled dipole simulations with Lx = Ly = LSPP and

Lz = 2Ld. Clearly, more training points does indeed improve the performance, with the random

learning points covering the entire range of possible analyte particle positions, ensuring there

are not patches of sensor surface that the neural network is unfamiliar with. However, beyond

a sampling density corresponding to Ntrain ∼ 3 × 104 (equivalent to ∆r2D
train ≈ 18.7nm and

∆r3D
train ≈ 40.7nm), adding additional learning points has little effect as the neural network has

already learned the region. Once above this threshold of Ntrain, the single scattering results show

slight improvement with the intensity ratio, defined as in Chapter 4 as the ratio of the spatially

averaged analyte particle scattered and background speckle intensities around the ring Ia/Ib.

Similarly, the mean error of the coupled dipole data increases with increased multiple scattering

(smaller ls), which can in part be attributed to multiple scattering effects, but the fact that the

the average background intensity increases as more background scatterers are scattering the

incident field, and thus Ib/Ia decreases as the density of scatterers increases, could also affect

performance, which is not multiple scattering effect..

The sampling density can also be changed by altering the training region size, and the

dependence on this is shown in Fig. 6.4, in which Lx = Ly is varied with fixed Ntrain = 5× 104

(and fixed Lz = 2Ld for 3D). Since the mean separation is linearly proportional to (LxLy)
1/2 = Lx,
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Figure 6.4: Mean error as a function of training region size Lx for (left) Gaussian random vector
simulated speckle and (right) coupled dipole simulated speckle.

the mean error in the single scattering case (i.e. Gaussian speckle simulations and long mean

free path coupled dipole simulations) decreases approximately linearly with Lx. In the multiple

scattering case, the local field at the particle includes a near field speckle component scattered

from the background scatterers, which the neural net must learn. As the training region

decreases, there is less of this near field speckle to learn, and thus the mean error decreases

more rapidly with decreasing Lx as compared to the linear decrease in the single scattering

regime. This indicates, that while in the single scattering regime, the size of the training region

has little effect on the mean error provided the ρtrain is kept constant, for multiple scattering,

reducing the training region size is advantageous even if ρtrain is unchanged. This suggests are

hierarchy of neural network localisation algorithms may be effective in the multiple scattering

regime, in which an initial neural network coarsely localises the analyte particle, before the

data is fed in to a different neural network trained only in the subregion the analyte has been

localised to, allowing a more precise estimate of the position. The process could then be iterated

with ever smaller subregions. Such approach does not require more training data, since the

subset of data within the relevant region can be used to train the subregion neural networks,

though it would require more training time to train multiple neural networks. There is little

benefit to this approach in the single scattering regime as training density of the subregion is

essentially the same as that of the entire region. The results presented in Figs. 6.3 and 6.4 arose

from a neural network trained and tested on noiseless data, but it is important to understand

the effect of noise on the performance. Fig. 6.5 shows the mean error as a function of SNRtot
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Figure 6.5: Mean error as a function of SNRtot for (left) Gaussian random vector simulated speckle
and (right) coupled dipole simulated speckle.

for different Ia/Ib and ls with Ntrain = 3× 104 and Lx = Ly = LSPP fixed. The noise in each

pixel is simulated via adding a random error to the simulated value of Ii drawn from a zero

mean Gaussian distribution with standard deviation σi, with the SNRtot defined as Ii/σi. From

the Gaussian random speckle simulated data results, at high noise levels, larger Ia/Ib give a

reduced mean error, as the intensity perturbation is larger compared to the noise, and therefore

less obscured by noise. Note that the definition of SNRtot differs from the SNR as defined

in Chapter 2, in that it includes the background speckle as part of the signal. Following the

Chapter 2 definition as the ratio of the perturbation ∆Ii relative to the noise, the SNR is defined

by SNR = ∆I i/σi, and the SNR dependence of coupled dipole simulations is shown in Fig. 6.6,

for different values of ls and Ntrain. Noticeably, while increasing the training set size improves

peak performance at a given SNR as one would expect, it does not improve the robustness

against noise in the sense that the neural network is shows little dependence on SNR once

SNR ' 10 regardless of the amount of training. Unsurprisingly, when the noise amplitude is

larger or comparable to the size of the perturbation to the speckle pattern from scattering from

the analyte particle, the error is large as the perturbation is not discernible from noise. Once

the noise is less than about 10% of the signal perturbation, the neural network performance is

essentially equivalent to the noiseless case.

Coupled dipole results presented so far consistently show, the mean error is smaller in the

single scattering regime. For example, in Fig. 6.3, the case ls = 37.2λ0 � LSPP = 8.0λ0,

firmly in the singe scattering regimes, achieves localisation precision . 50nm, while the strongly
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Figure 6.6: Mean error as a function of SNR for coupled dipole simulated speckle for different ls and
Ntrain.

multiple scattering case ls = 1.9λ0 < LSPP can only achieve a mean error ∼ 100nm. This can

be partly attributed to the fact that, in the single scattering case, the network is essentially

learning the smoothly varying fringe pattern of Fig. 4.1, whereas in the multiple scattering case,

as discussed in relation to Fig. 6.4, the network must learn the effects of the near field speckle

pattern at ra. The effect of multiple scattering on the mean error can be seen in more detail in

Fig. 6.7, showing the mean error as a function of ls, for training sets of 50,000 and 100,000 and

over training regions Lx = Ly = LSPP and 0.4LSPP. The mean error increases with increased

multiple scattering, but not drastically, barring a spike near ls ∼ 3λ0, which occurs for a few

different random configurations of the background scatterers and thus does not appear to be

arising due to the particular realisation the neural network was trained on. For the smaller

training region, the mean error shows a weaker dependence on ls, consistent with the notion

that the reduced performance with multiple scattering is due to the neural network having to

learn the near field speckle, and thus with less of the speckled SPP field near the sensor surface
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Figure 6.7: Mean error as a function of scattering mean free path for coupled dipole simulated speckle.
The plots shown are for Ntrain = 50, 000 (blue and green lines) and Ntrain = 100, 000 (yellow and red
lines), with corresponding mean separation of training points 〈∆x〉 shown.

to learn, the mean error does not suffer as much.

In Section 6.3.1, it was shown that, for sufficiently small scatterers where the interference

term dominated and the effect of loop paths was negligible (i.e. γ2 ≈ 1), the normalisation of

the neural network input should allow the results to generalise to analyte particles. This is an

important property from a practical viewpoint, since to train the neural network on experimental

data, one must generate data with known particle positions. Therefore, one must already have

a method to localise the analyte particle. Additionally, it is desirable to apply a single trained

neural network to any analyte particle, rather than having to train a neural network for each

analyte particle, which would be impractically time consuming. The results shown in Fig. 6.8

show the error as a function of particle radius Ra for coupled dipole simulations for different

mean free paths and training radii rtr, defined as the radius of analyte particle from which

training data was generated. Even in the presence of significant multiple scattering, a neural

network trained for rtr . 100nm performs almost identically on different analyte particles in the
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Figure 6.8: Mean error as a function of analyte particle radius, for different training radii rtr and
mean free path ls.

same size range, while a neural network trained on a large particle (e.g. the rtr = 500nm case)

does not generalise well to smaller analyte particles. It does appear that the intermediate case

rtr = 135.7nm, while generalising very well to smaller particles in the single scattering regime,

generalises significantly worse in the presence of multiple scattering

As a result of this feature, provided the training analyte particle is not too large, the trained

neural network can be applied to track a range of different small analyte particle. Thus, one

can choose an easily localised particle to generate training data, such as one with a fluorescent

label attached or one larger than the analyte particle one wishes to track (though not too much

larger), before applying the trained neural network to the track the desired analyte particle

(e.g. the smaller, label-free particle), which cannot be tracked in an alternative manner. In

addition, provided the phase of the polarisability, φα, does not change, the same principle

applied to changing the analyte particle refractive index. This can be seen from the fact that
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the interference terms is given (in the single scattering regime) by

interference = 2
k2

0

ε0

Re[E∗b (r) ·G(r, ra)αE0(ra)] (6.4)

= 2
k2

0

ε0

|α|Re[E∗b (r) ·G(r, ra)e
iφαE0(ra)]. (6.5)

For dielectric particles in a dielectric background medium where all permittivities are real, Eq.

(2.6) gives a φα = 0 regardless of the magnitude of the particle permittivity. Provided there

is not a large surface dressing effect, changing εa, provided it remains real, only changes |α|,

which has been normalised out of the neural network.

6.3.5 Comparison to Single Scattering Algorithm

Considering the results from Chapter 4, it can be seen that the mean error of the neural

network localisation algorithm never approaches the best case (i.e. noiseless or low noise case)

performance of the single scattering algorithm, which achieves errors as low as ∼ 1nm. The

single scattering algorithm benefits from the input of the additional information of the phase and

amplitude shift functions, i.e. Eqs. (4.7) and (4.8). The neural network approach does, however

bring in several advantages. Most obviously, and the main motivation behind developing the

neural network approach, is the capability to work in the multiple scattering regime. Another

benefit is that, while the single scattering algorithm only gives relative position shifts between

frame, the neural network gives an absolute position in each frame. This can be advantageous

if, for example, one was interested in the analyte particle position relative to some object on the

surface, in order to study the interaction between them. As such, the neural network based

approach remains of interest, especially if further performance improvements can enable it to

achieve localisation precision . 10nm, comparable to state of the art localisation techniques.

One possible extension is to work in the prior knowledge of the interference effects and changes

in propagation phase into a neural network localisation algorithm in the manner of physics

based machine learning [417, 418, 419], in which physics is used to provide constraints on the

neural network outputs. For example, one approach could be to provide the theoretical phase

and amplitude shifts of Eqs. (4.7) and (4.8) with an additional phase and amplitude shift term
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arising from multiple scattering, which is learned by the neural network.

6.4 Conclusion

This chapter has demonstrated how the use of a neural network as a universal function ap-

proximator can be used to learn the link between a speckle pattern and the position of an

analyte particle scattering light that contributes to the speckle pattern in order to localise the

analyte particle. This idea, while applicable more generally to other (static) random scattering

environments, has been explored in the context of the plasmonic random scattering system

introduced and studied in earlier chapters, using numerical simulations. The minimum achievable

errors, for a training region covering an area LSPP × LSPP of the surface, were found to be of

the order ∼ 30nm. In addition, the dependence of the neural network’s performance on various

parameters was quantified, and the difference between the single and multiple scattering regimes

was studied. Importantly, while the algorithm did show a slight drop in performance in the

multiple scattering regime, it could still localise to below 100nm accuracy, with the increasing

mean error mitigated by reducing the training region. Furthermore, it was demonstrated that

the normalisation of the input data allowed the generalisation of the neural network to different

sized analyte particles, rather than requiring training on an identical analyte particle, a crucial

feature in making any experimental realisation of this algorithm feasible.
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Conclusion

The primary aim of this thesis was to theoretically investigate techniques for sensing and tracking

(or localisation) of single nanoscale biological molecules via the use of random scattering of

SPPs. In particular, the sensing setup proposed in Chapter 4 (see Fig. 3.2) was investigated.

This was motivated by the discussion in Chapter 2, in which it was seen that achieving label free

sensing and tracking/localisation with single particle sensitivity in a relatively simple SPR-like

experimental setup would be a step towards low cost, commercially available single particle

sensors and trackers. Analysis of the sensing properties of the proposed system in the single

scattering regime was performed in Chapter 3. The results of this analysis elucidated some of

the benefits of the proposed sensing setup. In particular, the enhanced interaction between the

electric field and the analyte particle due to plasmonic enhancement, the interferometric signal

enhancement arising from interference between the light scattered from the analyte particle

and the random surface scattered light and the strong confinement of light scattered from near

the surface to the leakage radiation ring all give rise to larger scattered intensities which are

beneficial to sensing. In addition, the randomness of the scattering from the surface means

there is no stringent requirement on the quality of metal surfaces used. The results of Chapter

3 predict a fractional intensity change to a speckle pattern on the order of 10−4 when a 10nm

analyte ‘biological’ particle approaches the surface and enters the sensing volume.

The fact that the measured intensity in the single scattering regime corresponded to the

interference between a random speckle pattern and the field scattered from the analyte particle
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suggested that the intensity would be sensitive to phase changes to the analyte particle scattered

field, such as those that occur for small (sub-wavelength) shifts in the particle’s position. In

Chapter 4, an algorithm to track the analyte particle was derived, extracting the trajectory

based only on intensity measurements in the leakage radiation ring. This algorithm was based

on the fact that, ignoring multiple scattering effects, the phase and amplitude changes as the

particle moved could be derived within a simple Born approximation (see Eqs. (4.7) and (4.8)).

As such, the algorithm was only valid in the single scattering regime when multiple scattering

effects are negligible. The use of three frames to simultaneously extract two shifts in particle

position allowed for the elimination of the unknown speckle field phase and amplitude, while

enabling a consistency check to be built in to the algorithm. When tested on simulated data,

the algorithm was found to be capable of consistently achieving errors on the order of 1nm

(∼ 1% error in estimating a 90nm shift in particle position) under optimal noise conditions.

There was also a discussion of how the algorithm could be extended to more general situations

via modifying the phase and amplitude shift functions, including potentially being applicable

to other experimental setups with (static) random scattering, for example disordered systems

supporting other surface waves, or even electromagnetic waves in a homogeneous medium.

The effect of multiple scattering on the sensing setup was investigated in Chapter 5. In

order to facilitate this, three enhancement factors were derived within a coupled dipole model

describing how multiple scattering alters the field perturbation arising from addition of an

analyte particle, as compared to the single scattering perturbation. Each enhancement factor

was given a physical interpretation in terms of an associated set of multiple scattering. The

enhancement factors as presented in Eqs. (5.15), (5.19) and (5.20) apply generally to scenarios

modelled by a coupled dipole model (or even more generally, any point scatterer wave scattering

model). The statistics of these enhancement factors was studied for SPP scattering, both

analytically and numerically through Monte Carlo simulations. The most significant feature

was that, due to competition between stronger coupling with reduced scatterer separation and

Anderson localisation effects at high scatterer density preventing coupling of dipoles separated

by much more than a localisation length, there exists an optimum scatterer density at which the

enhancement to the field perturbation amplitude is maximised. At this optimum density, the
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mean total amplitude enhancement was found to be ∼ 102, indicating the sensitivity of the SPP

random scatterer sensor could be increased by up to two orders of magnitude by fabricating a

random nanostructure of scatterers on the surface with a optimised number density. Furthermore,

the statistics of the enhancement factors were found to have a dependence on the composition of

the individual scatterers (through their polarisability), in particular in the high loss case where

the suppression of long scattering paths results in greater sensitivity to the properties of a single

scattering event. A notable feature of this dependence on background scatterer polarisability is

that the optimum scatterer density and the maximum mean amplitude enhancement achieved

display a dependence on the phase of the background scatterer polarisability. While present

in the low loss case, this dependence is most prominent in the high loss case, where one can

go from no optimum density (i.e. the mean amplitude enhancement is always below 1 and the

multiple scattering regime is always less sensitive on average than the single scattering regime)

to having an optimum density at which peak mean enhancements of ∼ 102 are achieved. The

optimum polarisability phase is well described by the divergence condition of Eq. (5.60), which

corresponds to requiring the phase shift acquired in a single scattering event to vanish. The

dependence on scatterer polarisability indicates that the random SPP scattering nanostructure

based sensor could be further optimised by the tuning the parameters of the individual scatterers

(in both composition and geometry).

Motivated both by the potential benefits of multiple scattering discovered in Chapter 5

and the fact that some degree of multiple scattering may be unavoidable in practical systems,

Chapter 6 developed a neural network based algorithm to localise an analyte particle based

on the speckle pattern measured around the leakage radiation ring, which did not rely on the

assumption of negligible multiple scattering like the tracking algorithm described in Chapter 4.

The neural network learns the link between the perturbation to the (fixed) background speckle

and the analyte particle position based on training data of speckle pattern perturbations with

known analyte particle positions. The algorithm was verified on simulations, with the best

case performance giving a mean error of ∼ 30nm for a large training region (i.e. covering an

area LSPP × LSPP of the surface). Reducing the size of the training region further improves

performance due to the increased density of training points along with reduced region of SPP
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speckle to learn, with a mean localisation error below 10nm possible for a region smaller than

about 0.4LSPP × 0.4LSPP (0.4LSPP ≈ 2.30µm). The mean error was found to only to increase

slightly as multiple scattering increases, with the increase in mean error with decreasing scattering

mean free path being reduced for smaller training regions. Furthermore, the normalisation of

the input data was shown to allow the generalisation of a trained neural network to particles of

different size and refractive index, provided the phase of the analyte particle polarisability is

unchanged and the average background speckle intensity is significantly larger than the intensity

scattered from the analyte particle used in training the network, such that the interference term

dominates the intensity perturbation. As a result, the training data can be generated using

an analyte particle which can be localised with some independent method (e.g. a fluorescent

particle), but still applied to a wide range of different analyte particles. Importantly, this

analyte particle size independence feature was shown to still hold in the presence of multiple

scattering since the loop scattering paths, the effect of which is not normalised out in the neural

network input, have negligible effect for small biological particles. The neural network used for

the algorithm in Chapter 6 had a very simple dense, fully connected architecture with only 2

hidden layers. Given the wealth of different neural network architectures, it is plausible that

further experimentation with different architectures, such as the use of CNNs, could improve

performance, reducing the mean error or the amount of training data required. The amount of

training data required for the neural network in Chapter 6 to achieve reasonable mean error

. 100nm (Ntrain & 105) could be challenging to experimentally realise, and thus reducing this

threshold would be desirable.

In light of the results of subsequent chapters, it is worth revisiting the summary of benefits

of the proposed sensing/tracking setup discussed in Section 3.7 and adding a few additional

benefits as follows

• simple SPR-like experimental setup

• strong interaction with analyte particle due to plasmonic confinement

• interferometric signal enhancement as discussed in Section 2.2.3

• no requirement for interferometric stability or external reference field
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• stronger signal in the leakage radiation ring due to highly directional scattering compared

to diffuse dipolar scattering in the absence of leaky modes

• no need for high quality surfaces due to random roughness

• dependence on phase difference gives rise to dependence of scattered intensity on ra,

enabling tracking in the single scattering regime (Chapter 4) and multiple scattering

regime (Chapter 6)

• speckle acts as the reference field, improving robustness against (static) random scatterers

compared to techniques such as iSCAT that use a known reference field, which can be

degraded by speckle

• surface scatterers can give rise to multiple scattering, which can possibly increase the size

of the perturbation to the speckle pattern by up to two orders of magnitude from the

single scattering case. This effect can be maximised by optimising the parameters of a

random nanostructure of scatterers deliberately fabricated on the surface (Chapter 5).

Experimental verification and realisation of the theoretical results presented in this thesis

are a work in progress. Recent research has been able to detect single proteins based on the

interference of the light scattered from a protein bound to a receptor on a rough metal surface

with the light scattered from the roughness, when SPPs are excited on the metal surface [204].

In this case, the scattered light was measured above the metal surface, as opposed to in the

leakage ring. Similarly, a proof of principle experiment has shown the use of the leakage radiation

speckle arising from random gold nanoislands on a gold film supporting SPPs to detect the

binding of dielectric and gold nanoparticles, with the speckle Pearson correlation coefficient

introduced in Section 3.6.1 acting as a sensing signal [420]. In addition to the development of

experimental realisations of the proposed sensing setup investigated theoretically in this thesis,

it is hoped that the work in this thesis can be applied to similar studies of random scattering

systems for sensing or tracking applications, enabling further studies into extracting information

from speckle patterns and how scattering parameters affect how well such information can

be extracted. For example, the enhancement factors can be applied quite generally to many
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wave scattering problems, and different types of waves may exhibit quite different behaviour to

what was seen for SPP scattering in Chapter 5, especially for waves with different Anderson

localisation properties.
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Surface Plasmon Resonance Sensing of Lipid-Membrane-Mediated Biorecognition Events,”

J. Am. Chem. Soc, vol. 127, no. 14, pp. 5043–5048, 2005.

[118] J. H. Wade and R. C. Bailey, “Applications of Optical Microcavity Resonators in Analytical

Chemistry,” Annual Rev. Anal. Chem., vol. 9, pp. 1–25, 2016.

[119] W. Bogaerts, P. de Heyn, T. van Vaerenbergh, K. de Vos, S. Kumar Selvaraja, T. Claes,

P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, “Silicon microring resonators,”

Laser Photonics Rev., vol. 6, pp. 47–73, 2012.

[120] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator

microring resonator for sensitive and label-free biosensing,” Opt. Express, vol. 15, no. 12,

p. 7610, 2007.

[121] S. Lee, S. C. Eom, J. S. Chang, C. Huh, G. Y. Sung, and J. H. Shin, “A silicon nitride

microdisk resonator with a 40-nm-thin horizontal air slot,” Opt. Express, vol. 18, no. 11,

p. 11209, 2010.

[122] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. Vahala, “Ultra-high-Q toroid

microcavity on a chip,” Nature, vol. 421, pp. 925–928, 2003.

[123] P. Wang, J. Ward, Y. Yang, X. Feng, G. Brambilla, G. Farrell, and N. Chormaic, “Lead-

silicate glass optical microbubble resonator,” Appl. Phys. Lett, vol. 106, p. 61101, 2015.
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Appendix A

Evaluation of Enhancement Factor

Integrals

This appendix details the integration of Eqs. (5.54) and (5.55) within the scalar SPP scattering

model to arrive at Eqs (5.82) and (5.83). Starting with Eq. (5.55), in the scalar case, the

αN+1 factors cancel, while Eq. (5.80) can be used for G̃. The incident field E0,z(x, zs) =

Θ(x) exp(ikSPPx− κdzs) (recalling that only the z-component is considered in the scalar model,

and unit amplitude at x = 0 is used without loss of generality since the amplitude cancels with the

pN+1,z factors) has a transverse Fourier transform Ẽ0,z(q, zs) = −2πδ(qy) exp(−κdzs)/(i(kSPP −

qx)). Substituting these factors into Eq. (5.55) results in

〈S3〉 = nα
k2

0

ε0

∫
d2q

(2π)2

−4A0αe
−2κdzs

k2
SPP − q2

1

1 + 4nα
k20
ε0
A0e−2κdzs 1

k2SPP−q2
· −(2π)δ(qy)e

i(qx−kSPP)xN+1

i(kSPP − qx)

= e−ikSPPxN+1

∫ ∞
−∞

dqx
2π

4nµ

i(kSPP − qx)(k2
SPP − q2

x + 4nµ)
eiqxxN+1 , (A.1)

where q2 = |q| = q2
x + q2

y . Evaluation of the qx integral in Eq. (A.1) can be done using complex

analysis by considering the contour integral of the integrand in the complex plane around a

closed loop consisting of a line along the real axis from −R to R and a semi-circular arc in

the upper half plane of radius R going from R to −R (see Fig. A.1). By Jordan’s lemma, for

xN+1 > 0, the contribution from the arc vanishes as the radius R goes to ∞, while the integral

along the real line corresponds to the integral in Eq. (A.1). As a result the integral is calculated
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Im(qx)

Re(qx)

kSPP̃

k(n)

−k̃(n)

−RR

Figure A.1: Diagram showing the contour used to evaluate the integral in Eq. (A.1) in the limit
R→∞ and the location of the poles of the integrand.

from the sum of the residues in the upper half plane via Cauchy’s theorem. The integrand has

simple poles at kSPP and k̃(n) = (k2
SPP + 4nµ)1/2 (shown in Fig. A.1), with the pole at −k̃(n)

being in the lower half plane and therefore not contributing. The residues are found to be

Resqx=kSPP
[h(qx)] = −e

ikSPP

2πi
(A.2)

Resqx=k̃(n)[h(qx)] = − 4nµeik̃(n)xN+1

4πi
[
kSPP − k̃(n)

]
k̃(n)

, (A.3)

where h(qx) is the integrand in Eq. (A.1) (excluding the e−ikSPPxN+1 factor taken outside the

integration). Applying Cauchy’s theorem to Eq. (A.1) results in

〈S3〉 = 2πie−ikSPPxN+1

(
Resqx=kSPP

[h(qx)] + Resqx=k̃(n)[h(qx)]
)

= −1−
2nµ exp

(
i(k̃(n)− kSPP)xN+1

)
[
kSPP − k̃(n)

]
k̃(n)

. (A.4)
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Using the fact 〈γ3〉 = 1 + 〈S3〉 then results in Eq. (5.82). Note that the xN+1 < 0 case does not

need to be considered since E0(xN+1 < 0) = 0 and therefore the single scattering contribution

is zero and one cannot define an enhancement factor.

Moving on to calculating the scalar model result for 〈S2〉, given in Eq. (5.83), substitution

of Eq. (5.80) for G̃ in Eq. (5.54) results in

〈S2〉 = 16nµµN+1

∫
d2q

(2π)2

1

(k2
SPP − q2)(k2

SPP − q2 + 4nµ)
. (A.5)

Doing the angular integration results in

〈S2〉 = 16nµµN+1

∫ ∞
q=0

qdq

2π

1

(k2
SPP − q2)(k̃(n)2 − q2)

(A.6)

Letting u = q2, then splitting the integrand into partial fractions allows the integral over q to

be found as follows

〈S2〉 = 16nµµN+1

∫ ∞
u=0

du

4π

1

(k2
SPP − u)(k̃(n)2 − u)

=
µN+1

π

∫ ∞
u=0

(
1

k2
SPP − u

− 1

k̃(n)2 − u

)

= −µN+1

π
log

(
k̃(n)2

k2
SPP

)
. (A.7)

From Eq. (A.7), the main text result of Eq. (5.83) follows from using k̃(n)2/k2
SPP = 1+4nµ/k2

SPP.
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